login
A213889
Triangle of coefficients of representations of columns of A213745 in binomial basis.
2
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 0, 6, 15, 20, 15, 6, 1, 0, 0, 5, 21, 35, 35, 21, 7, 1, 0, 0, 4, 25, 56, 70, 56, 28, 8, 1, 0, 0, 3, 27, 80, 126, 126, 84, 36, 9, 1
OFFSET
0,9
COMMENTS
This array is the fifth array in the sequence of arrays A026729, A071675, A213887, A213888,..., such that the first two arrays are considered as triangles.
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213745. For example, s_1(n)=binomial(n,1)=n is the first column of A213745 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213745 for n>1, etc. In particular (see comment in A213745), in cases k=8,9 s_k(n) is A063417(n+2), A063418(n+2) respectively.
EXAMPLE
As a triangle, this begins
n/k.|..0....1....2....3....4....5....6....7....8....9
=====================================================
.0..|..1
.1..|..0....1
.2..|..0....1....1
.3..|..0....1....2....1
.4..|..0....1....3....3....1
.5..|..0....1....4....6....4....1
.6..|..0....1....5...10...10....5....1
.7..|..0....0....6...15...20...15....6....1
.8..|..0....0....5...21...35...35...21....7....1
.9..|..0....0....4...25...56...70...56...28....8....1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved