OFFSET
0,9
COMMENTS
This triangle is the fourth array in the sequence of arrays A026729, A071675, A213887,..., such that the first two arrays are considered as triangles.
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213744. For example, s_1(n)=binomial(n,1)=n is the first column of A213744 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213744 for n>1, etc. In particular (see comment inA213744), in cases k=7,8,9 s_k(n) is A063262(n+2), A063263(n+2), A063264(n+2) respectively.
EXAMPLE
As a triangle, this begins
n/k.|..0....1....2....3....4....5....6....7....8....9
=====================================================
.0..|..1
.1..|..0....1
.2..|..0....1....1
.3..|..0....1....2....1
.4..|..0....1....3....3....1
.5..|..0....1....4....6....4....1
.6..|..0....0....5...10...10....5....1
.7..|..0....0....4...15...20...15....6....1
.8..|..0....0....3...18...35...35...21....7....1
.9..|..0....0....2...19...52...70...56...28....8....1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladimir Shevelev and Peter J. C. Moses, Jun 23 2012
STATUS
approved