login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363779
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/(Sum_{j>=0} x^(j^3))^k.
4
1, 1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -3, 3, -1, 0, 1, -4, 6, -4, 1, 0, 1, -5, 10, -10, 5, -1, 0, 1, -6, 15, -20, 15, -6, 1, 0, 1, -7, 21, -35, 35, -21, 7, -1, 0, 1, -8, 28, -56, 70, -56, 28, -8, 0, 0, 1, -9, 36, -84, 126, -126, 84, -36, 7, 1, 0, 1, -10, 45, -120, 210, -252, 210, -120, 42, -4, -2, 0
OFFSET
0,8
FORMULA
T(0,k) = 1; T(n,k) = -(k/n) * Sum_{j=1..n} A363783(j) * T(n-j,k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, -6, ...
0, 1, 3, 6, 10, 15, 21, ...
0, -1, -4, -10, -20, -35, -56, ...
0, 1, 5, 15, 35, 70, 126, ...
0, -1, -6, -21, -56, -126, -252, ...
0, 1, 7, 28, 84, 210, 462, ...
CROSSREFS
Columns k=0..3 give A000007, A323633, A363776, A363777.
Main diagonal gives A363781.
Sequence in context: A213888 A119337 A213889 * A373164 A110555 A097805
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Jun 21 2023
STATUS
approved