login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*r+k,n)/(3*r+k) for k > 0.
3

%I #15 Nov 24 2024 09:26:46

%S 1,1,0,1,2,0,1,4,6,0,1,6,16,30,0,1,8,30,84,170,0,1,10,48,170,496,1050,

%T 0,1,12,70,296,1050,3140,6846,0,1,14,96,470,1920,6846,20832,46374,0,1,

%U 16,126,700,3210,12936,46374,142932,323154,0,1,18,160,994,5040,22402,89712,323154,1005856,2301618,0

%N Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*r+k,n)/(3*r+k) for k > 0.

%F G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x + x * A_k(x)^(3/k) )^k for k > 0.

%F G.f. of column k: B(x)^k where B(x) is the g.f. of A366266.

%F B(x)^k = B(x)^(k-1) + x * B(x)^(k-1) + x * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k+2) for n > 0.

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 0, 2, 4, 6, 8, 10, 12, ...

%e 0, 6, 16, 30, 48, 70, 96, ...

%e 0, 30, 84, 170, 296, 470, 700, ...

%e 0, 170, 496, 1050, 1920, 3210, 5040, ...

%e 0, 1050, 3140, 6846, 12936, 22402, 36492, ...

%e 0, 6846, 20832, 46374, 89712, 159390, 266800, ...

%o (PARI) T(n, k, t=0, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));

%o matrix(7, 7, n, k, T(n-1, k-1))

%Y Columns k=0..1 give A000007, A366266.

%Y Main diagonal gives A378378.

%Y Cf. A266213, A378317.

%Y Cf. A378323.

%K nonn,tabl

%O 0,5

%A _Seiichi Manyama_, Nov 23 2024