login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229224
The partition function G(n,7).
3
1, 1, 2, 5, 15, 52, 203, 877, 4139, 21137, 115874, 677623, 4204927, 27565188, 190168577, 1376119903, 10414950785, 82230347149, 675762947626, 5768465148493, 51054457464731, 467728049807348, 4428770289719931, 43281554035140829, 436015324638219779
OFFSET
0,3
COMMENTS
Number G(n,7) of set partitions of {1,...,n} into sets of size at most 7.
LINKS
FORMULA
E.g.f.: exp(Sum_{j=1..7} x^j/j!).
MAPLE
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(n, 7):
seq(a(n), n=0..30);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(n-1, i-1), i=1..min(n, 7)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 22 2016
MATHEMATICA
CoefficientList[Exp[Sum[x^j/j!, {j, 1, 7}]] + O[x]^25, x]*Range[0, 24]! (* Jean-François Alcover, May 21 2018 *)
CROSSREFS
Column k=7 of A229223.
Cf. A276927.
Sequence in context: A099262 A141081 A108305 * A343668 A276724 A287586
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 16 2013
STATUS
approved