login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229246
Number of set partitions of {1,...,n} with largest set of size 4.
2
1, 5, 30, 175, 1015, 6111, 38010, 244035, 1624425, 11187605, 79695616, 586787565, 4460703065, 34979737625, 282686608170, 2352035472141, 20130594430095, 177076978131795, 1599554765785900, 14826174374092235, 140904888153964011, 1372081103132069275
OFFSET
4,2
LINKS
FORMULA
E.g.f.: exp(Sum_{j=1..4} x^j/j!) - exp(Sum_{j=1..3} x^j/j!).
MAPLE
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(n, 4)-G(n, 3):
seq(a(n), n=4..30);
MATHEMATICA
nn=25; Drop[Range[0, nn]!CoefficientList[Series[(Exp[x^4/4!]-1)Exp[x+x^2/2!+x^3/3!], {x, 0, nn}], x], 4] (* Geoffrey Critzer, Oct 09 2013 *)
CROSSREFS
Column k=4 of A080510.
Sequence in context: A084158 A111469 A241588 * A276598 A057088 A156195
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 17 2013
STATUS
approved