|
|
A229414
|
|
Number of set partitions of {1,...,3n} into sets of size at most 3.
|
|
2
|
|
|
1, 5, 166, 12644, 1680592, 341185496, 97620050080, 37286121988256, 18280749571449664, 11168256342434121152, 8306264068494786829696, 7380771881944947770497280, 7715405978050522488223499776, 9365880670184268387214967727104, 13058232187415887547449498864463872
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..200
|
|
FORMULA
|
a(n) = (3n)! * [x^(3n)] exp(x + x^2/2 + x^3/6).
a(n) = A001680(3n) = A229223(3n,3).
|
|
MAPLE
|
a:= proc(n) option remember; `if`(n<3, [1, 5, 166][n+1],
((108*n^2-72*n+4)*a(n-1)-6*(n-1)*(3*n-5)*(27*n^2-48*n+10)*a(n-2)
+9*(n-1)*(n-2)*(3*n-1)*(3*n-7)*(3*n-5)*(3*n-8)*a(n-3))/8)
end:
seq(a(n), n=0..20);
|
|
MATHEMATICA
|
G[n_, k_] := G[n, k] = Module[{j, g}, Which[k > n, G[n, n], n == 0, 1, k < 1, 0, True, g = G[n - k, k]; For[j = k - 1, j >= 1, j--, g = g(n-j)/j + G[n - j, k]]; g]];
a[n_] := G[3n, 3];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz in A229243 *)
|
|
CROSSREFS
|
Row n=3 of A229243.
Sequence in context: A129995 A259613 A047940 * A210923 A229524 A288352
Adjacent sequences: A229411 A229412 A229413 * A229415 A229416 A229417
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Sep 22 2013
|
|
STATUS
|
approved
|
|
|
|