login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209414
Triangle of coefficients of polynomials u(n,x) jointly generated with A112351; see the Formula section.
3
1, 1, 1, 1, 4, 1, 1, 7, 9, 1, 1, 10, 26, 16, 1, 1, 13, 52, 70, 25, 1, 1, 16, 87, 190, 155, 36, 1, 1, 19, 131, 403, 553, 301, 49, 1, 1, 22, 184, 736, 1462, 1372, 532, 64, 1, 1, 25, 246, 1216, 3206, 4446, 3024, 876, 81, 1, 1, 28, 317, 1870, 6190, 11584, 11826, 6084, 1365, 100, 1
OFFSET
1,5
COMMENTS
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 01 2012
LINKS
FORMULA
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = 2x*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 01 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-2*y*x-2*y*x^2+y^2*x^2)/(1-x-2*y*x-y*x^2+y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
EXAMPLE
First five rows:
1;
1, 1;
1, 4, 1;
1, 7, 9, 1;
1, 10, 26, 16, 1;
First three polynomials v(n,x):
1
1 + x
1 + 4x + x^2.
From Philippe Deléham, Apr 01 2012: (Start)
(1, 0, 2, -2, 0, 0, 0, ...) DELTA (0, 1, 0, 1, 0, 0, 0, ...) begins:
1;
1, 0;
1, 1, 0;
1, 4, 1, 0;
1, 7, 9, 1, 0;
1, 10, 26, 16, 1, 0;
1, 13, 52, 70, 25, 1, 0; (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209414 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A112351 *)
CoefficientList[CoefficientList[Series[(1 - 2*y*x - 2*y*x^2 + y^2*x^2)/(1 - x - 2*y*x - y*x^2 + y^2*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Jan 03 2018 *)
CROSSREFS
Sequence in context: A316123 A146771 A073697 * A193636 A232968 A119673
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 09 2012
STATUS
approved