login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119673 Triangle read by rows, T(n, k) = 3*T(n-1, k-1) + T(n-1, k) for k<n and T(n, n) = 1, T(n, k) = 0, if k<0 or k>n. 2
1, 1, 1, 1, 4, 1, 1, 7, 13, 1, 1, 10, 34, 40, 1, 1, 13, 64, 142, 121, 1, 1, 16, 103, 334, 547, 364, 1, 1, 19, 151, 643, 1549, 2005, 1093, 1, 1, 22, 208, 1096, 3478, 6652, 7108, 3280, 1, 1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1, 1, 28, 349, 2542, 11926, 37384, 78322, 105796, 83653, 29524, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

FORMULA

T(n,k) = R(n,k,3) where R(n,k,m) = (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k, k+1)* hyper2F1([1,n+1],[k+2],m)/(k+1)!. - Peter Luschny, Jul 25 2014

EXAMPLE

Triangle begins:

  1;

  1,  1;

  1,  4,   1;

  1,  7,  13,    1;

  1, 10,  34,   40,    1;

  1, 13,  64,  142,  121,     1;

  1, 16, 103,  334,  547,   364,     1;

  1, 19, 151,  643, 1549,  2005,  1093,     1;

  1, 22, 208, 1096, 3478,  6652,  7108,  3280,    1;

  1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1;

MAPLE

T := (n, k, m) -> (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k, k+1)* hypergeom([1, n+1], [k+2], m)/(k+1)!; A119673 := (n, k) -> T(n, k, 3);

seq(print(seq(round(evalf(A119673(n, k))), k=0..n)), n=0..10); # Peter Luschny, Jul 25 2014

MATHEMATICA

T[_, 0]=1; T[n_, n_]=1; T[n_, k_]/; 0<k<n := T[n, k] = 3T[n-1, k-1] + T[n-1, k]; T[_, _] = 0;

Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)

PROG

(PARI) T(n, k) = if(k<0 || k>n, 0, if(k==n, 1, 3*T(n-1, k-1) +T(n-1, k)));

for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Nov 18 2019

(MAGMA)

function T(n, k)

  if k lt 0 or k gt n then return 0;

  elif k eq n then return 1;

  else return 3*T(n-1, k-1) + T(n-1, k);

  end if;

  return T;

end function;

[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 18 2019

(Sage)

@CachedFunction

def T(n, k):

    if (k<0 or k>n): return 0

    elif (k==n): return 1

    else: return 3*T(n-1, k-1) + T(n-1, k)

[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 18 2019

CROSSREFS

Cf. A003462, A014915, A081271, A119258.

Sequence in context: A209414 A193636 A232968 * A144447 A051455 A346875

Adjacent sequences:  A119670 A119671 A119672 * A119674 A119675 A119676

KEYWORD

easy,nonn,tabl

AUTHOR

Zerinvary Lajos, Jun 11 2006

EXTENSIONS

Definition clarified by Philippe Deléham, Jun 13 2006

Entry revised by N. J. A. Sloane, Jun 19 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 00:08 EDT 2022. Contains 356122 sequences. (Running on oeis4.)