login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of polynomials u(n,x) jointly generated with A112351; see the Formula section.
3

%I #19 Feb 08 2024 05:28:31

%S 1,1,1,1,4,1,1,7,9,1,1,10,26,16,1,1,13,52,70,25,1,1,16,87,190,155,36,

%T 1,1,19,131,403,553,301,49,1,1,22,184,736,1462,1372,532,64,1,1,25,246,

%U 1216,3206,4446,3024,876,81,1,1,28,317,1870,6190,11584,11826,6084,1365,100,1

%N Triangle of coefficients of polynomials u(n,x) jointly generated with A112351; see the Formula section.

%C For a discussion and guide to related arrays, see A208510.

%C Subtriangle of the triangle given by (1, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Apr 01 2012

%H G. C. Greubel, <a href="/A209414/b209414.txt">Table of n, a(n) for n = 1..1225</a>

%F u(n,x) = x*u(n-1,x) + v(n-1,x),

%F v(n,x) = 2x*u(n-1,x) + (x+1)*v(n-1,x),

%F where u(1,x)=1, v(1,x)=1.

%F From _Philippe Deléham_, Apr 01 2012: (Start)

%F As DELTA-triangle T(n,k) with 0 <= k <= n:

%F G.f.: (1-2*y*x-2*y*x^2+y^2*x^2)/(1-x-2*y*x-y*x^2+y^2*x^2).

%F T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)

%e First five rows:

%e 1;

%e 1, 1;

%e 1, 4, 1;

%e 1, 7, 9, 1;

%e 1, 10, 26, 16, 1;

%e First three polynomials v(n,x):

%e 1

%e 1 + x

%e 1 + 4x + x^2.

%e From _Philippe Deléham_, Apr 01 2012: (Start)

%e (1, 0, 2, -2, 0, 0, 0, ...) DELTA (0, 1, 0, 1, 0, 0, 0, ...) begins:

%e 1;

%e 1, 0;

%e 1, 1, 0;

%e 1, 4, 1, 0;

%e 1, 7, 9, 1, 0;

%e 1, 10, 26, 16, 1, 0;

%e 1, 13, 52, 70, 25, 1, 0; (End)

%t u[1, x_] := 1; v[1, x_] := 1; z = 16;

%t u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];

%t v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x];

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A209414 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A112351 *)

%t CoefficientList[CoefficientList[Series[(1 - 2*y*x - 2*y*x^2 + y^2*x^2)/(1 - x - 2*y*x - y*x^2 + y^2*x^2), {x,0,10}, {y,0,10}], x], y] // Flatten (* _G. C. Greubel_, Jan 03 2018 *)

%Y Cf. A112351, A208510.

%K nonn,tabl

%O 1,5

%A _Clark Kimberling_, Mar 09 2012