login
A038994
Number of sublattices of index n in generic 7-dimensional lattice.
13
1, 127, 1093, 10795, 19531, 138811, 137257, 788035, 896260, 2480437, 1948717, 11798935, 5229043, 17431639, 21347383, 53743987, 25646167, 113825020, 49659541, 210837145, 150021901, 247487059, 154764793, 861322255, 317886556, 664088461, 678468820, 1481689315
OFFSET
1,2
REFERENCES
Michael Baake, "Solution of the coincidence problem in dimensions d <= 4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.
FORMULA
f(Q, n) = Sum_{d|n} d*f(Q-1, d); here Q=7.
Multiplicative with a(p^e) = Product_{k=1..6} (p^(e+k)-1)/(p^k-1).
Sum_{k=1..n} a(k) ~ c * n^7, where c = Pi^12*zeta(3)*zeta(5)*zeta(7)/3572100 = 0.325206... . - Amiram Eldar, Oct 19 2022
MATHEMATICA
f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 6}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
CROSSREFS
KEYWORD
nonn,mult
EXTENSIONS
More terms from Amiram Eldar, Aug 29 2019
STATUS
approved