login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by antidiagonals: T(n,k) is the number of sublattices of index n in generic k-dimensional lattice (n >= 1, k >= 1).
34

%I #19 Dec 10 2018 08:52:56

%S 1,1,1,1,3,1,1,4,7,1,1,7,13,15,1,1,6,35,40,31,1,1,12,31,155,121,63,1,

%T 1,8,91,156,651,364,127,1,1,15,57,600,781,2667,1093,255,1,1,13,155,

%U 400,3751,3906,10795,3280,511,1,1,18,130,1395,2801,22932,19531,43435,9841,1023,1

%N Array read by antidiagonals: T(n,k) is the number of sublattices of index n in generic k-dimensional lattice (n >= 1, k >= 1).

%D Günter Scheja, Uwe Storch, Lehrbuch der Algebra, Teil 2. BG Teubner, Stuttgart, 1988. [§63, Aufg. 13]

%H Álvar Ibeas, <a href="/A160870/b160870.txt">First 100 antidiagonals, flattened</a>

%H Michael Baake, <a href="http://arxiv.org/abs/math/0605222">Solution of the coincidence problem in dimensions d≤4</a>, arXiv:math/0605222 [math.MG], 2006. [Appx. A]

%H B. Gruber, <a href="https://doi.org/10.1107/S0108767397009781">Alternative formulas for the number of sublattices</a>, Acta Cryst. A53 (1997) 807-808.

%H J. H. Kwak and J. Lee, <a href="https://doi.org/10.1142/9789812799890_0005">Enumeration of graph coverings, surface branched coverings and related group theory</a>, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.

%H Yi Ming Zou, <a href="https://arxiv.org/abs/math/0610684">Gaussian binomials and the number of sublattices</a>, arXiv:math/0610684 [math.CO], 2006.

%H Yi Ming Zou, <a href="https://doi.org/10.1107/S010876730602455X">Gaussian binomials and the number of sublattices</a>, Acta Cryst. A62 (2006) 409-410.

%F T(n,1) = 1; T(1,k) = 1; T(n, k) = Sum_{d|n} d*T(d, k-1).

%F From _Álvar Ibeas_, Oct 31 2015: (Start)

%F T(n,k) = Sum_{d|n} (n/d)^(k-1) * T(d, k-1).

%F T(Product(p^e), k) = Product(Gaussian_poly[e+k-1, e]_p).

%F (End)

%e Array begins:

%e 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...

%e 1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535,...

%e 1,4,13,40,121,364,1093,3280,9841,29524,88573,265720,797161,2391484,...

%e 1,7,35,155,651,2667,10795,43435,174251,698027,2794155,11180715,...

%e 1,6,31,156,781,3906,19531,97656,488281,2441406,12207031,61035156,...

%e ...

%t T[_, 1] = 1; T[1, _] = 1; T[n_, k_] := T[n, k] = DivisorSum[n, (n/#)^(k-1) *T[#, k-1]&]; Table[T[n-k+1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Dec 04 2015 *)

%o (PARI):

%o adu(M)=

%o { /* Read by AntiDiagonals, Upwards */

%o local(N=matsize(M)[1]);

%o for (n=1,N, for(j=0,n-1, print1(M[n-j, j+1], ", ") ) );

%o }

%o T(n,k)=

%o {

%o if ( (n==1) || (k==1), return(1) );

%o return( sumdiv(n,d, d*T(d, k-1)) );

%o }

%o M=matrix(15,15,n,k,T(n,k)) /* square array */

%o adu(M) /* sequence */

%Y Columns: A000203, A001001, A038991, A038992, A038993, A038994, A038995, A038996, A038997.

%Y Rows: A000012, A000225, A003462, A006095, A003463, A160869, A023000, A006096.

%Y Transposed array: A128119.

%K nonn,tabl,easy

%O 1,5

%A _N. J. A. Sloane_, Nov 19 2009