login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063441
a(n) = sigma(n) * mu(n).
12
1, -3, -4, 0, -6, 12, -8, 0, 0, 18, -12, 0, -14, 24, 24, 0, -18, 0, -20, 0, 32, 36, -24, 0, 0, 42, 0, 0, -30, -72, -32, 0, 48, 54, 48, 0, -38, 60, 56, 0, -42, -96, -44, 0, 0, 72, -48, 0, 0, 0, 72, 0, -54, 0, 72, 0, 80, 90, -60, 0, -62, 96, 0, 0, 84, -144, -68, 0, 96, -144, -72, 0, -74, 114, 0, 0, 96, -168, -80, 0, 0, 126, -84, 0, 108
OFFSET
1,2
LINKS
FORMULA
a(n) = sum_{d|n} d * mu(n).
a(n) = A000203(n) * A008683(n).
a(n) = A003959(n) * A008683(n) if n is squarefree, 0 otherwise. - Ralf Stephan, Mar 26 2004
Multiplicative with a(p^e) = -p-1, if e = 1, 0 otherwise. - Mitch Harris, Jun 27 2005, sign flipped by R. J. Mathar, May 29 2011
sum(n>0, a(n)/n^s) = product(p prime, 1-p^(-s)-p^(1-s) ). - Ralf Stephan, Jul 07 2013
EXAMPLE
n=6: divisors of 6 are = [1, 2, 3, 6] and 1 * mu(6) + 2 * mu(6) + 3 * mu(6) + 6 * mu(6) = 12.
MATHEMATICA
a[n_] := DivisorSigma[1, n] MoebiusMu[n]; Array[a, 90] (* Jean-François Alcover, Dec 05 2015 *)
PROG
(PARI) j=[]; for(n=1, 200, j=concat(j, sumdiv(n, d, d*moebius(n)))); j
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, 1-X-p*X)[n]) /* Ralf Stephan, Jul 07 2013 */
(PARI) { for (n=1, 2000, write("b063441.txt", n, " ", direuler(p=2, n, 1-X-p*X)[n]) ) } \\ Harry J. Smith, Aug 21 2009
CROSSREFS
Sequence in context: A105576 A105826 A110665 * A319600 A092894 A276563
KEYWORD
easy,sign,mult
AUTHOR
Jason Earls, Jul 23 2001
STATUS
approved