OFFSET
1,3
COMMENTS
Number of endofunctions over RRS[n]. Used in proof of Dirichlet theorem to derive characters: a(n) = A000312(A000010(n)). - Labos Elemer, May 27 2002
Sum_{n>=1} 1/phi(n)^phi(n) ~ 2.765711032... and so apparently equals Sum_{n>=1} A014197(n)/n^n where A014197(n) is the number of numbers m such that phi(m) = n. Is this a known result? - Gerald McGarvey, May 16 2004
The equality above is true and it is not unique for phi: for each value k = phi(n) the summand 1/phi(n)^phi(n) appears A014197(k) times, so Sum_{n>=1} 1/phi(n)^phi(n) = Sum_{k>=1} A014197(k) * (1/k^k). - Amiram Eldar, Dec 10 2024
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..200
FORMULA
n log n / (log log n) << log a(n) < n log n. - Charles R Greathouse IV, Jan 19 2012
MATHEMATICA
Table[EulerPhi[n]^EulerPhi[n], {n, 30}] (* Vincenzo Librandi, Dec 29 2019 *)
PROG
(PARI) { for (n=1, 200, p=eulerphi(n); write("b063439.txt", n, " ", p^p) ) } \\ Harry J. Smith, Aug 21 2009
(Magma) [EulerPhi(n)^EulerPhi(n): n in [1..30]]; // Vincenzo Librandi, Dec 29 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 24 2001
STATUS
approved