OFFSET
0,2
COMMENTS
Related to parity of Beatty sequences for exp(-(1/2)/n). Let f(k,n)=-sum(i=1,n,sum(j=1,i,(-1)^floor(j*exp(-(1/2)/n)))), then a(n)=Max{f(k,n) : 1<=k<=4*a(n)-2} and for 0<=i<=4*a(n)-3, f(i,n)=f(4*a(n)-2-i,n). - Benoit Cloitre, May 26 2004
Or, sum of multiples of 2 and 3 from 0 to 6*n. - Zak Seidov, Aug 06 2016
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..1000
Leo Tavares, Illustration: Stellar Triangles.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 3*n*(4*n+1) = 3*A007742(n).
a(n) = 24*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
From Colin Barker, Jul 07 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 3*x*(5 + 3*x)/(1-x)^3. (End)
From Amiram Eldar, Mar 27 2022: (Start)
Sum_{n>=1} 1/a(n) = 4/3 - Pi/6 - log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(2)) + log(2)/3 + sqrt(2)*log(sqrt(2)+1)/3 - 4/3. (End)
E.g.f.: 3*x*(5 + 4*x)*exp(x). - Elmo R. Oliveira, Oct 31 2024
EXAMPLE
The spiral begins:
.
16--15--14
/ \
17 5---4 13
/ / \ \
18 6 0 3 12
/ / / / /
19 7 1---2 11 26
\ \ / /
20 8---9--10 25
\ /
21--22--23--24
MATHEMATICA
a[n_] := 3*n*(4*n + 1); Array[a, 40, 0] (* Amiram Eldar, Mar 27 2022 *)
PROG
(PARI) { for (n=0, 1000, write("b063436.txt", n, " ", n*(12*n + 3)) ) } \\ Harry J. Smith, Aug 21 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Floor van Lamoen, Jul 21 2001
STATUS
approved