login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136621
Transpose T(n,k) of Parker's partition triangle A047812 (n >= 1 and 0 <= k <= n-1).
4
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 11, 20, 9, 1, 1, 18, 51, 48, 13, 1, 1, 26, 112, 169, 100, 20, 1, 1, 38, 221, 486, 461, 194, 28, 1, 1, 52, 411, 1210, 1667, 1128, 352, 40, 1, 1, 73, 720, 2761, 5095, 4959, 2517, 615, 54, 1, 1, 97, 1221, 5850, 13894, 18084, 13241, 5288, 1034, 75, 1
OFFSET
1,5
COMMENTS
Parker's triangle is closely associated with q-binomial coefficients and Gaussian polynomials; cf. A063746. For example, row 4 of A063746 is 1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1, the coefficients of [8, 4], while the entries in row 4 of A047812 are the coefficients of q^(k*(4+1)) = q^(5*k) in [8, 4] where k runs from 0 to n-1 = 3. Likewise, by symmetry, "1 7 5 1" is embedded also because they are the coefficients of q^(5*(3-k)), where k runs from 0 to n-1 = 3. [Edited by Petros Hadjicostas, May 30 2020]
LINKS
R. K. Guy, Parker's permutation problem involves the Catalan numbers, Amer. Math. Monthly 100 (1993), 287-289.
Wikipedia, E. T. Parker.
EXAMPLE
Row four of A047812 is 1 5 7 1, so row four of the present entry is 1 7 5 1.
From Petros Hadjicostas, May 30 2020: (Start)
Triangle T(n,k) (with rows n >= 1 and columns k = 0..n-1) begins:
1;
1, 1;
1, 3, 1;
1, 7, 5, 1;
1, 11, 20, 9, 1;
1, 18, 51, 48, 13, 1;
1, 26, 112, 169, 100, 20, 1;
1, 38, 221, 486, 461, 194, 28, 1;
1, 52, 411, 1210, 1667, 1128, 352, 40, 1;
... (End)
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
<n, 0, b(n, i-1, t)+b(n-i, min(i, n-i), t-1)))
end:
T:= (n, k)-> b((n-k-1)*(n+1), n$2):
seq(seq(T(n, k), k=0..n-1), n=1..12); # Alois P. Heinz, May 30 2020
MATHEMATICA
T[n_, k_]:= SeriesCoefficient[QBinomial[2*n, n, q], {q, 0, k*(n+1)}];
Table[T[n, n-k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, May 31 2020 *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[n < 0 || t i < n, 0, b[n, i - 1, t] + b[n - i, Min[i, n - i], t - 1]]];
T[n_, k_] := b[(n-k-1)(n+1), n, n];
Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
PROG
(PARI) T(n, k) = #partitions(k*(n+1), n, n);
for (n=1, 10, for (k=0, n-1, print1(T(n, n-1-k), ", "); ); print(); ); \\ Petros Hadjicostas, May 30 2020
/* Second program, courtesy of G. C. Greubel */
T(n, k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) );
vector(12, n, vector(n, k, T(n, n-k))) \\ Petros Hadjicostas, May 31 2020
(Sage)
def T(n, k):
P.<x> = PowerSeriesRing(ZZ, k*(n+1)+1)
return P( q_binomial(2*n, n, x) ).list()[k*(n+1)]
[[ T(n, n-k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, May 31 2020
CROSSREFS
Cf. A000108 (Catalan row sums), A047812, A063746.
Sequence in context: A158793 A112996 A205099 * A108625 A112857 A118801
KEYWORD
nonn,tabl
AUTHOR
Alford Arnold, Jan 26 2008
EXTENSIONS
Name edited by Petros Hadjicostas, May 30 2020
STATUS
approved