|
|
A047812
|
|
Parker's partition triangle T(n,k) read by rows (n >= 1 and 0 <= k <= n-1).
|
|
15
|
|
|
1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 9, 20, 11, 1, 1, 13, 48, 51, 18, 1, 1, 20, 100, 169, 112, 26, 1, 1, 28, 194, 461, 486, 221, 38, 1, 1, 40, 352, 1128, 1667, 1210, 411, 52, 1, 1, 54, 615, 2517, 4959, 5095, 2761, 720, 73, 1, 1, 75, 1034, 5288, 13241, 18084, 13894, 5850, 1221, 97, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
The entries in row n are the coefficients of q^(k*(n+1)) in the q-binomial coefficient [2n, n], where k runs from 0 to n-1. - James A. Sellers
T(n,k) is the number of partitions of k*(n+1) into at most n parts each no bigger than n (see the links). - Petros Hadjicostas, May 30 2020
Named after the American mathematician Ernest Tilden Parker (1926-1991). - Amiram Eldar, Jun 20 2021
|
|
LINKS
|
|
|
EXAMPLE
|
Triangle T(n,k) (with rows n >= 1 and columns k = 0..n-1) starts:
1;
1, 1;
1, 3, 1;
1, 5, 7 1;
1, 9, 20, 11, 1;
1, 13, 48, 51, 18, 1;
...
|
|
MAPLE
|
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
<n, 0, b(n, i-1, t)+b(n-i, min(i, n-i), t-1)))
end:
T:= (n, k)-> b(k*(n+1), n$2):
|
|
MATHEMATICA
|
s[n_] := s[n] = Series[Product[(1-q^(2n-k)) / (1-q^(k+1)), {k, 0, n-1}], {q, 0, n^2}];
t[n_, k_] := SeriesCoefficient[s[n], k(n+1)];
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[n < 0 || t i < n, 0, b[n, i - 1, t] + b[n - i, Min[i, n - i], t - 1]]];
T[n_, k_] := b[k(n+1), n, n];
|
|
PROG
|
(PARI) T(n, k) = #partitions(k*(n+1), n, n);
for (n=1, 10, for (k=0, n-1, print1(T(n, k), ", "); ); print(); ); \\ Petros Hadjicostas, May 30 2020
T(n, k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) );
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|