login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141523 Expansion of (3-2*x-3*x^2)/(1-x-x^2-x^3). 53
3, 1, 1, 5, 7, 13, 25, 45, 83, 153, 281, 517, 951, 1749, 3217, 5917, 10883, 20017, 36817, 67717, 124551, 229085, 421353, 774989, 1425427, 2621769, 4822185, 8869381, 16313335, 30004901, 55187617, 101505853, 186698371, 343391841 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Martin Burtscher, Igor Szczyrba, RafaƂ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.

Index entries for linear recurrences with constant coefficients, signature (1,1,1).

FORMULA

a(0)=3; a(1)=1; a(2)=1; thereafter a(n)=a(n-1)+a(n-2)+a(n-3).

O.g.f.: (3-2*x-3*x^2)/(1-x-x^2-x^3). a(n)= A001644(n) - 2*A000073(n). - R. J. Mathar, Aug 22 2008

MATHEMATICA

Clear[f, g, n, a] a[0] = 3; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; Table[a[n], {n, 0, 30}]

LinearRecurrence[{1, 1, 1}, {3, 1, 1}, 40] (* Vincenzo Librandi, Oct 17 2012 *)

PROG

(MAGMA) I:=[3, 1, 1]; [n le 3 select I[n] else Self(n-1)+Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Oct 17 2012

(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, 1, 1]^n*[3; 1; 1])[1, 1] \\ Charles R Greathouse IV, Mar 22 2016

CROSSREFS

Cf. A001644.

Sequence in context: A047812 A129392 A118538 * A285808 A201588 A086385

Adjacent sequences:  A141520 A141521 A141522 * A141524 A141525 A141526

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula and Gary W. Adamson, Aug 11 2008

EXTENSIONS

Edited by N. J. A. Sloane, Oct 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 25 00:39 EST 2018. Contains 299630 sequences. (Running on oeis4.)