login
A158886
a(n) = (n+1)^n * n! * C(1/(n+1), n).
2
1, 1, -2, 21, -504, 21505, -1432080, 137227545, -17893715840, 3047775608241, -657209398809600, 175036741783305325, -56436686113876992000, 21667473499647065000625, -9768377272589156352395264
OFFSET
0,3
LINKS
FORMULA
a(n) = Product_{k=0..n-1} (1 - k*(n+1)) for n>0 with a(0)=1.
a(n) = Coefficient of x^n/n! in (1 + (n+1)*x)^(1/(n+1)).
a(n) ~ (-1)^(n+1) * sqrt(2*Pi) * exp(1-n) * n^(2*n-3/2). - Vaclav Kotesovec, Jun 28 2015
EXAMPLE
a(1) = 1, a(2) = 1*(-2), a(3) = 1*(-3)*(-7), a(4) = 1*(-4)*(-9)*(-14).
MAPLE
seq( (n+1)^n*n!*binomial(1/(n+1), n), n=0..20); # G. C. Greubel, Mar 04 2020
MATHEMATICA
Table[(n+1)^n n!Binomial[1/(n+1), n], {n, 0, 20}] (* Harvey P. Dale, Oct 17 2013 *)
PROG
(PARI) {a(n) = (n+1)^n * n! * binomial(1/(n+1), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = if(n==0, 1, prod(k=0, n-1, 1 - k*(n+1) ))}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = n!*polcoeff( (1 + (n+1)*x +x*O(x^n))^(1/(n+1)), n)}
for(n=0, 20, print1(a(n), ", "))
(Magma) [1] cat [(&*[1-j*(n+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Mar 04 2020
(Sage) [(n+1)^n*factorial(n)*binomial(1/(n+1), n) for n in (0..20)] # G. C. Greubel, Mar 04 2020
CROSSREFS
Cf. A158887.
Sequence in context: A303867 A238696 A226057 * A092957 A356481 A171107
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 01 2009
STATUS
approved