login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158886
a(n) = (n+1)^n * n! * C(1/(n+1), n).
2
1, 1, -2, 21, -504, 21505, -1432080, 137227545, -17893715840, 3047775608241, -657209398809600, 175036741783305325, -56436686113876992000, 21667473499647065000625, -9768377272589156352395264
OFFSET
0,3
LINKS
FORMULA
a(n) = Product_{k=0..n-1} (1 - k*(n+1)) for n>0 with a(0)=1.
a(n) = Coefficient of x^n/n! in (1 + (n+1)*x)^(1/(n+1)).
a(n) ~ (-1)^(n+1) * sqrt(2*Pi) * exp(1-n) * n^(2*n-3/2). - Vaclav Kotesovec, Jun 28 2015
EXAMPLE
a(1) = 1, a(2) = 1*(-2), a(3) = 1*(-3)*(-7), a(4) = 1*(-4)*(-9)*(-14).
MAPLE
seq( (n+1)^n*n!*binomial(1/(n+1), n), n=0..20); # G. C. Greubel, Mar 04 2020
MATHEMATICA
Table[(n+1)^n n!Binomial[1/(n+1), n], {n, 0, 20}] (* Harvey P. Dale, Oct 17 2013 *)
PROG
(PARI) {a(n) = (n+1)^n * n! * binomial(1/(n+1), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = if(n==0, 1, prod(k=0, n-1, 1 - k*(n+1) ))}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = n!*polcoeff( (1 + (n+1)*x +x*O(x^n))^(1/(n+1)), n)}
for(n=0, 20, print1(a(n), ", "))
(Magma) [1] cat [(&*[1-j*(n+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Mar 04 2020
(Sage) [(n+1)^n*factorial(n)*binomial(1/(n+1), n) for n in (0..20)] # G. C. Greubel, Mar 04 2020
CROSSREFS
Cf. A158887.
Sequence in context: A303867 A238696 A226057 * A092957 A356481 A171107
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 01 2009
STATUS
approved