login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158883
G.f. satisfies: [x^n] A(x)^(n+1) = [x^n] A(x)^n for n>1 with A(0)=A'(0)=1.
5
1, 1, -2, 9, -56, 425, -3726, 36652, -397440, 4695489, -59941550, 821711605, -12037503384, 187689245588, -3104186515976, 54295661153700, -1001685184237056, 19444296845046033, -396260414466644574, 8460628832978195683, -188898511962856879400
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x*(d/dx)(x/A(x)) so that x^2*A'(x) = x*A(x) + A(x)^2 - A(x)^3.
a(n) = (-1)^(n-1)*n*A088716(n-1) for n >= 1.
G.f.: A(x) = 1/(Sum_{n>=0} (-1)^n*A088716(n)*x^n), where g.f. F(x) of A088716 satisfies: F(x) = 1 + x*F(x)*(d/dx)(x*F(x)).
G.f. satisfies: [x^n] A(x)^(n+1) = (n+1)*A158884(n) for n > 1.
EXAMPLE
G.f.: A(x) = 1 + x - 2*x^2 + 9*x^3 - 56*x^4 + 425*x^5 - 3726*x^6 + ...
(d/dx) (x/A(x)) = 1 - 2*x + 9*x^2 - 56*x^3 + 425*x^4 - 3726*x^5 + ...
1/A(x) = 1 - x + 3*x^2 - 14*x^3 + 85*x^4 + ... + (-1)^n*A088716(n)*x^n + ...
where a(n) = (-1)^(n-1)*n*A088716(n-1) for n >= 1.
...
Coefficients of powers of g.f. A(x) begin:
A^1: 1,1,-2,9,-56,425,-3726,36652,-397440,4695489,...;
A^2: 1,2,(-3),14,-90,702,-6297,63144,-695886,8334822,...;
A^3: 1,3,(-3),(16),-108,870,-7997,81774,-915798,11116902,...;
A^4: 1,4,-2,(16),(-115),960,-9050,94368,-1073658,13204560,...;
A^5: 1,5,0,15,(-115),(996),-9630,102365,-1182690,14730890,...;
A^6: 1,6,3,14,-111,(996),(-9870),106890,-1253466,15804548,...;
A^7: 1,7,7,14,-105,973,(-9870),(108816),-1294412,16514162,...;
A^8: 1,8,12,16,-98,936,-9704,(108816),(-1312227),16931984,...;
A^9: 1,9,18,21,-90,891,-9426,107406,(-1312227),(17116900),...;
A^10:1,10,25,30,-80,842,-9075,104980,-1298625,(17116900),...; ...
where coefficients [x^n] A(x)^(n+1) and [x^n] A(x)^n are
enclosed in parenthesis and equal (n+1)*A158884(n) for n > 1:
[ -3,16,-115,996,-9870,108816,-1312227,17116900,...];
compare to A158884:
[1,1,-1,4,-23,166,-1410,13602,-145803,1711690,-21785618,...]
and also to the logarithmic derivative of A158884:
[1,-3,16,-115,996,-9870,108816,-1312227,17116900,...].
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(
b(j)*b(n-j-1)*(j+1), j=0..n-1))
end:
a:= n-> `if`(n=0, 1, -(-1)^n*n*b(n-1)):
seq(a(n), n=0..25); # Alois P. Heinz, Feb 18 2020
MATHEMATICA
m = 19; A[_] = 1;
Do[A[x_] = 1 + x*D[x/A[x], x] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Feb 18 2020 *)
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[ #A]=(Vec(Ser(A)^(#A-1))-Vec(Ser(A)^(#A)))[ #A]); A[n+1]}
(Maxima)
Composita(n, k, F):=if k=1 then F(n) else sum(F(i+1)*Composita(n-i-1, k-1, F), i, 0, n-k);
array(a, 10);
a[1]:1;
af(n):=a[n];
for n:2 thru 10 do a[n]:n*sum(Composita(n-1, k, af)*(-1)^k , k, 1, n-1);
makelist(af(n), n, 1, 10); /* Vladimir Kruchinin, Dec 01 2011 */
CROSSREFS
Cf. A088716, A158884, variant: A158882.
Sequence in context: A138740 A276370 A292809 * A052860 A318289 A052840
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 30 2009
STATUS
approved