login
A052840
a(n) = n*A029767(n-1).
1
0, 0, 2, 9, 56, 450, 4464, 52920, 731520, 11566800, 206035200, 4083488640, 89137843200, 2124970848000, 54929029478400, 1530259226496000, 45705137084006400, 1456873475016960000, 49362677881380864000
OFFSET
0,3
COMMENTS
Old name was: A simple grammar.
FORMULA
E.g.f.: log((-1+x)/(-1+2*x))*x.
D-finite with recurrence: a(1)=0, a(2)=2, (-2*n+2*n^3-4+4*n^2)*a(n)+(-6*n-3*n^2)*a(n+1)+(n+1)*a(n+2), i.e. (-n+1)*a(n) +3*n*(n-2)*a(n-1) -2*n*(n-1)*(n-3)*a(n-2)=0
For n > 1, a(n) = n! * (2^(n-1) - 1)/(n-1). - Vaclav Kotesovec, Jun 06 2019
MAPLE
spec := [S, {B=Sequence(Z, 1 <= card), C=Cycle(B), S=Prod(Z, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
# alternative
A052840 := proc(n)
log((-1+x)/(-1+2*x))*x ;
coeftayl(%, x=0, n)*n! ;
end proc:
seq(A052840(n), n=0..20) ; # R. J. Mathar, Jan 20 2025
MATHEMATICA
Flatten[{0, 0, Table[n!*(2^(n-1) - 1)/(n-1), {n, 2, 20}]}] (* Vaclav Kotesovec, Jun 06 2019 *)
CROSSREFS
Sequence in context: A158883 A052860 A318289 * A308380 A036243 A376106
KEYWORD
easy,nonn,changed
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved