OFFSET
0,3
COMMENTS
Old name was: A simple grammar.
Euler transform of A004111. - Geoffrey Critzer, Oct 13 2012
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 64, Eq. (3.3.15); p. 80, Problem 3.10.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 811
FORMULA
G.f.: Product_{n>=1} 1/(1 - x^n)^A004111(n). - Geoffrey Critzer, Oct 13 2012
MAPLE
spec := [S, {C=Prod(Z, B), B=PowerSet(C), S=Set(C)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
# second Maple program:
with(numtheory):
b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(d*
b(d)*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*b(d),
d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Mar 06 2015
MATHEMATICA
nn=35; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2k, 0, -s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i]s[n-1, i]i, {i, 1, n-1}]/(n-1); it=Table[a[i], {i, 1, nn}]; CoefficientList[Series[Product[1/(1-x^i)^it[[i]], {i, 1, nn}], {x, 0, nn}], x] (* after code given by Robert A. Russell in A004111 *)
(* Geoffrey Critzer, Oct 13 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Geoffrey Critzer, Oct 13 2012
New name using Geoffrey Critzer's comment from Alois P. Heinz, Jan 13 2025
STATUS
approved