login
A052843
a(n) is the number of forests with n nodes of rooted unlabeled identity trees.
1
1, 1, 2, 3, 6, 10, 20, 38, 79, 162, 348, 751, 1661, 3695, 8335, 18919, 43310, 99664, 230700, 536327, 1252298, 2934508, 6900046, 16272771, 38484608, 91243851, 216839820, 516423974, 1232376315, 2946354649, 7056335478, 16926813939, 40665822366, 97836595223, 235697108115, 568531616730
OFFSET
0,3
COMMENTS
Old name was: A simple grammar.
Euler transform of A004111. - Geoffrey Critzer, Oct 13 2012
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 64, Eq. (3.3.15); p. 80, Problem 3.10.
LINKS
FORMULA
G.f.: Product_{n>=1} 1/(1 - x^n)^A004111(n). - Geoffrey Critzer, Oct 13 2012
MAPLE
spec := [S, {C=Prod(Z, B), B=PowerSet(C), S=Set(C)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
# second Maple program:
with(numtheory):
b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(d*
b(d)*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*b(d),
d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Mar 06 2015
MATHEMATICA
nn=35; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2k, 0, -s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i]s[n-1, i]i, {i, 1, n-1}]/(n-1); it=Table[a[i], {i, 1, nn}]; CoefficientList[Series[Product[1/(1-x^i)^it[[i]], {i, 1, nn}], {x, 0, nn}], x] (* after code given by Robert A. Russell in A004111 *)
(* Geoffrey Critzer, Oct 13 2012 *)
CROSSREFS
Cf. A004111.
Sequence in context: A123423 A005195 A228835 * A120707 A047111 A106741
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Geoffrey Critzer, Oct 13 2012
New name using Geoffrey Critzer's comment from Alois P. Heinz, Jan 13 2025
STATUS
approved