login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052845
Expansion of e.g.f.: exp(x^2/(1-x)).
18
1, 0, 2, 6, 36, 240, 1920, 17640, 183120, 2116800, 26943840, 374220000, 5628934080, 91122071040, 1579034096640, 29155689763200, 571308920582400, 11838533804697600, 258608278645516800, 5938673374272038400, 143003892952893772800, 3602735624977961472000
OFFSET
0,3
COMMENTS
Number of partitions of {1,..,n} into any number of lists of size >1, where a list means an ordered subset, cf. A000262. - Vladeta Jovovic, Vladimir Baltic, Oct 29 2002
FORMULA
D-finite with recurrence: a(0)=1, a(1)=0, a(2)=2, (n^2+3*n+2)*a(n)+(n^2+n-2)*a(n+1)+(-4-2*n)*a(n+2)+a(n+3)=0.
Inverse binomial transform of A000262: Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A000262(k). - Vladeta Jovovic, Vladimir Baltic, Oct 29 2002
a(n) ~ n^(n-1/4)*exp(-3/2+2*sqrt(n)-n)/sqrt(2) * (1 + 43/(48*sqrt(n))). - Vaclav Kotesovec, Jun 24 2013, extended Dec 01 2021
E.g.f.: E(0) - 1, where E(k) = 2 + x^2/((2*k+1)*(1-x) - x^2/E(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Dec 30 2013
E.g.f.: Product_{k>1} exp(x^k). - Seiichi Manyama, Sep 29 2017
a(0) = 1; a(n) = Sum_{k=2..n} binomial(n-1,k-1) * k! * a(n-k). - Ilya Gutkovskiy, Feb 09 2020
a(n) = Sum_{k=0..n} (-1)^k * A129652(n,k). - Alois P. Heinz, Feb 21 2022
MAPLE
spec := [S, {B=Sequence(Z, 1 <= card), C=Prod(Z, B), S= Set(C, 1 <= card)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[x^2/(1-x)], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, May 31 2012 *)
PROG
(PARI)
N=33; x='x+O('x^N);
egf=exp(x^2/(1-x));
Vec(serlaplace(egf))
/* Joerg Arndt, Sep 15 2012 */
CROSSREFS
Sequence in context: A375799 A002869 A293120 * A052832 A058583 A345747
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Initial term changed to a(0) = 1, Apr 24 2005
STATUS
approved