login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345747
a(n) = n! * Sum_{k=0..floor(n/2)} k^(n - 2*k)/k!.
4
1, 0, 2, 6, 36, 240, 2280, 27720, 425040, 7862400, 171188640, 4319330400, 125199708480, 4142318019840, 155388782989440, 6557345831836800, 308677784640825600, 16079233115648102400, 920518264903690252800, 57603377545940850624000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: Sum_{k>=0} x^(2*k) / (k! * (1 - k * x)).
a(n) ~ sqrt(2*Pi) * exp((n - 1/2)/LambertW(exp(2/3)*(2*n - 1)/6) - 2*n) * n^(2*n + 1/2) / (3^(n + 1/2) * sqrt(1 + LambertW(exp(2/3)*(2*n - 1)/6)) * LambertW(exp(2/3)*(2*n - 1)/6)^n). - Vaclav Kotesovec, Oct 30 2022
MATHEMATICA
Join[{1}, Table[n!*Sum[k^(n - 2*k)/k!, {k, 0, n/2}], {n, 1, 20}]] (* Vaclav Kotesovec, Oct 30 2022 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\2, k^(n-2*k)/k!);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^(2*k)/(k!*(1-k*x)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 17 2022
STATUS
approved