Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Feb 22 2022 09:49:18
%S 1,0,2,6,36,240,1920,17640,183120,2116800,26943840,374220000,
%T 5628934080,91122071040,1579034096640,29155689763200,571308920582400,
%U 11838533804697600,258608278645516800,5938673374272038400,143003892952893772800,3602735624977961472000
%N Expansion of e.g.f.: exp(x^2/(1-x)).
%C Number of partitions of {1,..,n} into any number of lists of size >1, where a list means an ordered subset, cf. A000262. - _Vladeta Jovovic_, _Vladimir Baltic_, Oct 29 2002
%H Harvey P. Dale, <a href="/A052845/b052845.txt">Table of n, a(n) for n = 0..400</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=813">Encyclopedia of Combinatorial Structures 813</a>
%H R. A. Proctor, <a href="https://arxiv.org/abs/math/0606404">Let's Expand Rota's Twelvefold Way for Counting Partitions!</a>, arXiv:math/0606404 [math.CO], 2006-2007.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>
%F D-finite with recurrence: a(0)=1, a(1)=0, a(2)=2, (n^2+3*n+2)*a(n)+(n^2+n-2)*a(n+1)+(-4-2*n)*a(n+2)+a(n+3)=0.
%F Inverse binomial transform of A000262: Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*A000262(k). - _Vladeta Jovovic_, _Vladimir Baltic_, Oct 29 2002
%F a(n) ~ n^(n-1/4)*exp(-3/2+2*sqrt(n)-n)/sqrt(2) * (1 + 43/(48*sqrt(n))). - _Vaclav Kotesovec_, Jun 24 2013, extended Dec 01 2021
%F E.g.f.: E(0) - 1, where E(k) = 2 + x^2/((2*k+1)*(1-x) - x^2/E(k+1) ); (continued fraction ). - _Sergei N. Gladkovskii_, Dec 30 2013
%F E.g.f.: Product_{k>1} exp(x^k). - _Seiichi Manyama_, Sep 29 2017
%F a(0) = 1; a(n) = Sum_{k=2..n} binomial(n-1,k-1) * k! * a(n-k). - _Ilya Gutkovskiy_, Feb 09 2020
%F a(n) = Sum_{k=0..n} (-1)^k * A129652(n,k). - _Alois P. Heinz_, Feb 21 2022
%p spec := [S,{B=Sequence(Z,1 <= card),C=Prod(Z,B),S= Set(C,1 <= card)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%t With[{nn=20},CoefficientList[Series[Exp[x^2/(1-x)],{x,0,nn}], x] Range[ 0,nn]!] (* _Harvey P. Dale_, May 31 2012 *)
%o (PARI)
%o N=33; x='x+O('x^N);
%o egf=exp(x^2/(1-x));
%o Vec(serlaplace(egf))
%o /* _Joerg Arndt_, Sep 15 2012 */
%Y Cf. A000262, A129652.
%K easy,nonn
%O 0,3
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E Initial term changed to a(0) = 1, Apr 24 2005