|
|
A158880
|
|
Number of spanning trees in C_6 X P_n.
|
|
5
|
|
|
6, 8100, 7741440, 7138643400, 6551815840350, 6009209192448000, 5511006731579419434, 5054037303588059379600, 4634949992739663836897280, 4250612670512943969574312500, 3898145031429828405122837863554
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A linear divisibility sequence of order 18. - Peter Bala, May 02 2014
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 1..100
Eric Weisstein's World of Mathematics, Cycle Graph
Eric Weisstein's World of Mathematics, Path Graph
Eric Weisstein's World of Mathematics, Spanning Tree
Index to divisibility sequences
|
|
FORMULA
|
See program.
a(n) = 6*U(n-1,3/2)^2*U(n-1,5/2)^2*U(n-1,3) = 6*A001906(n)^2*A004254(n)^2*A001109(n), where U(n,x) is a Chebyshev polynomial of the second kind. - Peter Bala, May 02 2014
|
|
MAPLE
|
a:= n-> 6* (Matrix(1, 18, (i, j)-> -sign(j-10) *[0, 1, 1350, 1290240, 1189773900, 1091969306725, 1001534865408000, 918501121929903239, 842339550598009896600, 772491665456610639482880][1+abs(j-10)]). Matrix(18, (i, j)-> if i=j-1 then 1 elif j=1 then [842608511100, -639641521152, 276457068288, -65829977967, 8292106368, -524839680, 16393554, -232704, 1152, -1][1+abs(i-9)] else 0 fi)^n) [1, 10]: seq(a(n), n=1..15);
|
|
CROSSREFS
|
Column 6 of A173958.
Cf. A001353, A003690, A003753, A003733, A158898. A001109, A001906, A004254.
Sequence in context: A341873 A013784 A188979 * A341874 A137040 A357805
Adjacent sequences: A158877 A158878 A158879 * A158881 A158882 A158883
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Alois P. Heinz, Mar 28 2009
|
|
STATUS
|
approved
|
|
|
|