The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158887 a(n) = (n+1)^n * n! * binomial(n-1 + 1/(n+1), n). 3
 1, 1, 4, 45, 1056, 43225, 2756160, 253586025, 31872332800, 5252921480961, 1099886703552000, 285322741626047125, 89844523369696972800, 33764841634845724313625, 14930493174337400252809216 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..230 FORMULA a(n) = Product_{k=0..n-1} (k*(n+1) + 1) for n>0 with a(0)=1. a(n) = coefficient of x^n/(n!*(n+1)^n) in 1/(1-x)^(1/(n+1)). a(n) ~ sqrt(2*Pi) * exp(1-n) * n^(2*n-3/2). - Vaclav Kotesovec, Jun 28 2015 a(n) = (1+n)^n * gamma(n+1/(n+1)) / gamma(1/(n+1)). - Gerry Martens, May 30 2018 EXAMPLE a(1) = 1, a(2) = 1*4, a(3) = 1*5*9, a(4) = 1*6*11*16, a(5) = 1*7*13*19*25. MAPLE seq(mul(j*(n+1)+1, j=0..n-1), n = 0..15); # G. C. Greubel, Mar 04 2020 MATHEMATICA Table[(n+1)^n n!Binomial[n-1+1/(n+1), n], {n, 0, 20}] (* Harvey P. Dale, Oct 26 2011 *) a[n_] := (1 + n)^n Gamma[n + 1/(1 + n)]/Gamma[1/(n + 1)] // FullSimplify Table[a[n], {n, 0, 20} (* Gerry Martens, May 30 2018 *) PROG (PARI) a(n)=(n+1)^n*n!*polcoeff(1/(1-x+x*O(x^n))^(1/(n+1)), n) (PARI) a(n)=if(n==0, 1, prod(k=0, n-1, k*(n+1)+1)) (Magma) [1] cat [&*[j*(n+1)+1: j in [0..n-1]]: n in [1..15]]; // G. C. Greubel, Mar 04 2020 (Sage) [product(j*(n+1)+1 for j in (0..n-1)) for n in (0..15)] # G. C. Greubel, Mar 04 2020 (GAP) List([0..15], n-> Product([0..n-1], j-> j*(n+1)+1) ); # G. C. Greubel, Mar 04 2020 CROSSREFS Sequence in context: A338456 A276292 A174484 * A126452 A082765 A132873 Adjacent sequences: A158884 A158885 A158886 * A158888 A158889 A158890 KEYWORD nonn AUTHOR Paul D. Hanna, May 01 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 02:30 EDT 2024. Contains 372703 sequences. (Running on oeis4.)