login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204248
Permanent of the n-th principal submatrix of A002024.
5
1, 1, 7, 126, 4276, 234300, 18877020, 2100159600, 308417610816, 57786899446080, 13452134426136000, 3808606484711952000, 1288711254432792833280, 513583129024901529834240, 238093035025913233419052800, 127039392937347095305900800000, 77298350216325487808699492352000
OFFSET
0,3
COMMENTS
a(n) is permanent of Toeplitz matrix
n n-1 n-2 ... 3 2 1
n+1 n n-1 ... 4 3 2
n+2 n+1 n ... 5 4 3
.......
2n-1 2n-2 2n-3 ... n+2 n+1 n. - Vladimir Shevelev, Dec 01 2013
LINKS
FORMULA
a(n) = (-1)^n * Sum_{k=0..n-1} stirling1(n,n-k) * stirling1(n+1,k+1) * (n-k)! * k!. - Vladimir Shevelev, Dec 01 2013
Limit n->infinity a(n)^(1/n)/n^2 = -2*c^2/(exp(2)*(1+2*c)) = 0.33230326707622..., where c = LambertW(-1,-1/(2*exp(1/2))) = -1.756431208626... - Vaclav Kotesovec, Dec 10 2013
a(n) ~ 2.531082868731093... * (-2*c^2/(exp(2)*(1+2*c)))^n * n^(2*n+1/2), where c = LambertW(-1,-1/(2*exp(1/2))). - Vaclav Kotesovec, Dec 10 2013
EXAMPLE
From Vladimir Shevelev, Dec 01 2013: (Start)
a(3) = permanent ( 3 2 1 ) = 3*17 + 2*22 + 1*31 = 126.
( 4 3 2 )
( 5 4 3 )
and
a(3) = |stirling1(3,3)*stirling1(4,1)|*6*1 + |stirling1(3,2)*stirling1(4,2)|*2*1 + |stirling1(3,1)*stirling1(4,3)|*1*2 = 1*6*6*1 + 3*11*2*1 + 2*6*1*2 = 126. (End)
MATHEMATICA
f[i_, j_] := i + j - 1;
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A002024 *)
Join[{1}, Table[Permanent[m[n]], {n, 1, 15}]] (* A204248 *)
PROG
(PARI) a(n) = (-1)^n * sum(k=0, n-1, stirling(n, n-k) * stirling(n+1, k+1) * (n-k)! * k! ) /* Max Alekseyev, Dec 02 2013 */
(Python)
from math import factorial
from sympy.functions.combinatorial.numbers import stirling
def A204248(n): return sum(stirling(n, n-k, kind=1)*stirling(n+1, k+1, kind=1)*factorial(n-k)*factorial(k) for k in range(n)) if n else 1 # Chai Wah Wu, Oct 16 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 14 2012
EXTENSIONS
More terms from Max Alekseyev, Dec 02 2013
a(0)=1 prepended by Pontus von Brömssen, Jan 30 2021
STATUS
approved