The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308378 Numbers k such that phi(2k+1) = phi(2k+2). 0
 0, 1, 7, 127, 247, 487, 1312, 1627, 1852, 2593, 5857, 6682, 9157, 11467, 12772, 23107, 24607, 24667, 28822, 32767, 82087, 92317, 99157, 107887, 143497, 153697, 159637, 194122, 198742, 207637, 245767, 284407, 294703, 343492, 420127 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS For n > 0, 2*a(n) + 1 is a term of A020884. This is because 2*a(n) + 1 is odd and every odd number is the difference of the squares of two consecutive numbers and hence are coprime. For n > 0, (2*a(n) + 1) * (2*a(n) + 2) is a term of A024364. This is because (2*a(n) + 1) * (2*a(n) + 2) = 2*((a(n) + 1)^2 + (a(n) + 1) * a(n)) and gcd((a(n) + 1), a(n)) = 1. For n > 0, a(n) is congruent to 1 or 4 mod 6. 2*a(n) + 1 is congruent to 1 or 3 mod 6 and is a term of A047241. 2*a(n) + 2 is congruent to 2 or 4 mod 6 and is a term of A047235. LINKS FORMULA a(n) = (A299535(n) - 2) / 2. EXAMPLE 0 is a term because phi(1) = phi(2) = 1. 1 is a term because phi(3) = phi(4) = 2. 7 is a term because phi(15) = phi(16) = 8. MATHEMATICA Select[Range[0, 9999], EulerPhi[2# + 1] == EulerPhi[2# + 2] &] (* Alonso del Arte, Jul 05 2019 *) Select[(#-1)/2&/@SequencePosition[EulerPhi[Range], {x_, x_}][[All, 1]], IntegerQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 24 2019 *) PROG (PARI) lista(nn) = for(n=0, nn, if(eulerphi(2*n+1) == eulerphi(2*n+2), print1(n, ", "))); lista(430000) CROSSREFS Cf. A000010, A004767, A020884, A024364, A047235, A047241, A299535. Subset of A047234. Subset of A001274. Sequence in context: A204248 A084940 A246648 * A139987 A061744 A256146 Adjacent sequences:  A308375 A308376 A308377 * A308379 A308380 A308381 KEYWORD nonn AUTHOR Torlach Rush, May 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 13:57 EDT 2020. Contains 336323 sequences. (Running on oeis4.)