

A308377


"Autotomy numbers" that have exactly 10 distinct decimal digits. Subtracting their last digit from the remaining part produces a shorter autotomy number (still with no duplicate digit). This process is iterated until the remaining part has only one digit (details in the Example section).


2



2487159630, 2581740963, 3697512840, 3751908642, 3791508642, 3796512840, 4283716590, 4573921680, 4609785321, 4832716590, 4960785321, 4976853210, 5016793284, 5071693284, 5106793284, 5170693284, 5179386420, 5187429630, 5389710642, 5397186420, 5473921680, 5710693284, 5731908642, 5786413290, 5791308642, 5809764321, 5839710642, 5847102963, 5897130642, 5897643210, 5907864321
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The sequence is finite and has 182 terms; a(182) = 9876543210.


LINKS

JeanMarc Falcoz, Table of n, a(n) for n = 1..182
Eric Angelini, Pandigitaux et saucissons (in French).


EXAMPLE

a(2) = 2581740963
Subtract 3 (last digit) from the remaining part 258174096 = 258174093
Subtract 3 (last digit) from the remaining part 25817409 = 25817406
Subtract 6 (last digit) from the remaining part 2581740 = 2581734
Subtract 4 (last digit) from the remaining part 258173 = 258169
Subtract 9 (last digit) from the remaining part 25816 = 25807
Subtract 7 (last digit) from the remaining part 2580 = 2573
Subtract 3 (last digit) from the remaining part 257 = 254
Subtract 4 (last digit) from the remaining part 25 = 21
Subtract 1 (last digit) from the remaining part 2 = 1 (single digit, end).


CROSSREFS

Cf. A308393 (definition of an "autotomy number", A050278 (pandigital numbers, version 1: each digit appears exactly once), A171102 (pandigital numbers, version 2: each digit appears at least once).
Sequence in context: A289544 A258611 A120290 * A271105 A134439 A288844
Adjacent sequences: A308374 A308375 A308376 * A308378 A308379 A308380


KEYWORD

base,nonn,fini


AUTHOR

Eric Angelini and JeanMarc Falcoz, May 23 2019


STATUS

approved



