The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120290 Numerator of generalized harmonic number H(p-1,2p)= Sum[ 1/k^(2p), {k,1,p-1}] divided by p^2 for prime p>3. 3
 2479157521, 159936660724017234488561, 1119583852472161859174156302552583713828739479026834819554843860744244189 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS Generalized harmonic number is H(n,m)= Sum[ 1/k^m, {k,1,n} ]. The numerator of generalized harmonic number H(p-1,2p) is divisible by p^2 for prime p>3. LINKS Alexander Adamchuk, First 5 terms. Eric Weisstein's World of Mathematics, Harmonic Number. Eric Weisstein's World of Mathematics, Wolstenholme's Theorem. FORMULA a(n) = numerator[ Sum[ 1/k^(2*Prime[n]), {k,1,Prime[n]-1} ]] / Prime[n]^2 for n>2. EXAMPLE With prime(3) = 5, a(3) = numerator[ 1 + 1/2^10 + 1/3^10 + 1/4^10 ] / 5^2 = 61978938025 / 25 = 2479157521. MATHEMATICA Table[Numerator[Sum[1/k^(2*Prime[n]), {k, 1, Prime[n]-1}]], {n, 3, 7}]/Table[Prime[n]^2, {n, 3, 7}] CROSSREFS Cf. A119722, A099828, A099827, A001008, A007406, A007408, A007410. Sequence in context: A131013 A289544 A258611 * A308377 A271105 A134439 Adjacent sequences: A120287 A120288 A120289 * A120291 A120292 A120293 KEYWORD frac,nonn,bref AUTHOR Alexander Adamchuk, Jul 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 08:59 EDT 2024. Contains 371935 sequences. (Running on oeis4.)