The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024364 Ordered perimeters of primitive Pythagorean triangles. 30
 12, 30, 40, 56, 70, 84, 90, 126, 132, 144, 154, 176, 182, 198, 208, 220, 234, 240, 260, 286, 306, 312, 330, 340, 374, 380, 390, 408, 418, 420, 442, 456, 462, 476, 494, 510, 532, 544, 546, 552, 570, 598, 608, 644, 646, 650, 672, 684, 690, 700, 714, 736, 756 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives perimeters A+B+C. k is in this sequence iff A070109(k) > 0. This is a subsequence of A010814. For the corresponding primitive Pythagorean triples see A103606. - Wolfdieter Lang, Oct 06 2014 Any term in this sequence can be generated by f(m,k) = 2*m*(m+k), where m and k are positive coprime integers and m > 1, k < m, and m and k are not both odd. For example: f(2,1) = 2*2*(2+1) = 12. - Agola Kisira Odero, Apr 29 2016 LINKS Ray Chandler, Table of n, a(n) for n = 1..10000 (duplicates removed by Sean A. Irvine) Leon Bernstein, On primitive Pythagorean triangles with equal perimeters, The Fibonacci Quarterly 27.1 (1989) 2-6 (and the earlier Bernstein paper 20.3 (1982) 227-241, see A024408). Ron Knott, Pythagorean Triples and Online Calculators FORMULA a(n) = 2*A020886(n). MAPLE isA024364 := proc(an) local r::integer, s::integer ; for r from floor((an/4)^(1/2)) to floor((an/2)^(1/2)) do for s from r-1 to 1 by -2 do if 2*r*(r+s) = an and gcd(r, s) < 2 then RETURN(true) ; fi ; if 2*r*(r+s) < an then break ; fi ; od ; od : RETURN(false) ; end : for n from 2 to 400 do if isA024364(n) then printf("%d, ", n) ; fi ; od ; # R. J. Mathar, Jun 08 2006 MATHEMATICA isA024364[an_] := Module[{r, s}, For[r = Floor[(an/4)^(1/2)], r <= Floor[(an/2)^(1/2)], r++, For[s = r - 1, s >= 1, s -= 2, If[2r(r + s) == an && GCD[r, s] < 2, Return[True]]; If[2r(r + s) < an, Break[]]]]; Return[False]]; Select[Range[2, 1000], isA024364] (* Jean-François Alcover, May 24 2024, after R. J. Mathar *) CROSSREFS Cf. A020886, A024408. Sequence in context: A307348 A289691 A145469 * A093507 A325802 A326019 Adjacent sequences: A024361 A024362 A024363 * A024365 A024366 A024367 KEYWORD nonn AUTHOR David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 10:09 EDT 2024. Contains 373383 sequences. (Running on oeis4.)