login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020886
Ordered semiperimeters of primitive Pythagorean triangles.
31
6, 15, 20, 28, 35, 42, 45, 63, 66, 72, 77, 88, 91, 99, 104, 110, 117, 120, 130, 143, 153, 156, 165, 170, 187, 190, 195, 204, 209, 210, 221, 228, 231, 238, 247, 255, 266, 272, 273, 276, 285, 299, 304, 322, 323, 325, 336, 342, 345, 350, 357, 368, 378, 391, 399
OFFSET
1,1
COMMENTS
k is in this sequence iff A078926(k) > 0.
Also, ordered sides c of primitive triples (a, b, c) for integer-sided triangles where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c (A343893). - Bernard Schott, May 06 2021
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (duplicates removed by Sean A. Irvine)
FORMULA
a(n) = A024364(n)/2.
MAPLE
isA020886 := proc(an) local r::integer, s::integer ; for r from floor((an/2)^(1/2)) to floor(an^(1/2)) do for s from r-1 to 1 by -2 do if r*(r+s) = an and gcd(r, s) < 2 then RETURN(true) ; fi ; if r*(r+s) < an then break ; fi ; od ; od : RETURN(false) ; end : for n from 2 to 400 do if isA020886(n) then printf("%d, ", n) ; fi ; od ; # R. J. Mathar, Jun 08 2006
MATHEMATICA
A078926[n_] := Sum[Boole[n < d^2 < 2n && CoprimeQ[d, n/d]], {d, Divisors[ n/2^IntegerExponent[n, 2]]}];
Select[Range[1000], A078926[#]>0&] (* Jean-François Alcover, Mar 23 2020 *)
PROG
(PARI) is(n, f=factor(n))=my(P=apply(i->f[i, 1]^f[i, 2], [2-n%2..#f~]), nn=2*n); forvec(v=vector(#P, i, [0, 1]), my(d=prod(i=1, #v, P[i]^v[i]), d2=d^2); if(d2<nn && d2>n, return(1))); 0
list(lim)=my(v=List()); forfactored(n=6, lim\1, if(is(n[1], n[2]), listput(v, n[1]))); Vec(v) \\ Charles R Greathouse IV, Feb 03 2023
CROSSREFS
Subsequence of A005279.
Triangles with 2/a = 1/b + 1/c: A343891 (triples), A020883 (side a), A343892 (side b), A343893 (side c), A343894 (perimeter).
Sequence in context: A044439 A348866 A128253 * A093508 A302022 A094183
KEYWORD
nonn
STATUS
approved