OFFSET
1,1
COMMENTS
The triples (a, b, c) are listed in increasing order of side a, and if sides a coincide then in increasing order of side b.
The sequence is not monotonic: a(9) = 183 > a(10) = 177.
All terms are odd.
For the corresponding primitive triples and miscellaneous properties and references, see A343891.
LINKS
Michel Marcus, Table of n, a(n) for n = 1..1000
FORMULA
EXAMPLE
a(3) = 15 + 12 + 20 = 47, because the third triple is (15, 12, 20) with relations 2/15 = 1/12 + 1/20 and 20-15 < 12 < 20+15.
MAPLE
for a from 4 to 200 do
for b from floor(a/2)+1 to a-1 do
c := a*b/(2*b-a);
if c=floor(c) and igcd(a, b, c)=1 and c-b<a then print(a+b+c); end if;
end do;
end do;
PROG
(PARI) lista(nn) = {my(list = List()); for (a=4, nn, for (b = floor(a/2)+1, a-1, my(c = a*b/(2*b-a)); if ((denominator(c) == 1) && (gcd([a, b, c]) == 1) && (c-b<a), listput(list, a+b+c)); ); ); Vec(list); }; \\ Michel Marcus, May 10 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernard Schott, May 07 2021
STATUS
approved