login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217734
Primes of the form x^2 + y^3 + 1 where x and y are prime.
2
13, 37, 53, 149, 151, 197, 317, 353, 389, 487, 557, 967, 1087, 1381, 1453, 1621, 1693, 1709, 1861, 1877, 2207, 2237, 2293, 2837, 3181, 3541, 3607, 3847, 4517, 4813, 5167, 5443, 5821, 6269, 6367, 6373, 6661, 6763, 6869, 6917, 7573, 7723, 7949, 8221, 9403, 9437
OFFSET
1,1
COMMENTS
Terms are primes of the form 1 + A045699(n) for some n.
The first term that can be expressed two distinct ways is a(207) = 159079 = 101^2+53^3+1 = 367^2+29^3+1.
There are 27 values < 10^8 that can be expressed in two distinct ways.
LINKS
Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
EXAMPLE
53 is in the sequence because 53 = 5^2 + 3^3 + 1 and 3, 5, and 53 are all prime numbers.
PROG
(PARI)
isa(n) = {
my(r);
forprime(x = 1, sqrtint(n),
r = n - x ^ 2 - 1;
if( ispower(r, 3, &p) && isprime(p),
return(1)
)
);
return(0)
}
select(isa, primes(1200))
(Python)
from sympy import isprime, primerange
def aupto(lim):
sq = list(p**2 for p in primerange(1, int(lim**(1/2))+2))
cb = list(p**3 for p in primerange(1, int(lim**(1/3))+2))
s3 = set(s for s in (a + b + 1 for a in sq for b in cb) if s <= lim)
return list(filter(isprime, sorted(s3)))
print(aupto(9999)) # Michael S. Branicky, Jun 24 2021
(SageMath)
def aList(sup):
P = [p**2 for p in prime_range(1, int(sup**(1/2))+2)]
Q = [(p**3 + 1) for p in prime_range(1, int(sup**(1/3))+2)]
return sorted([a+b for a in P for b in Q if a+b <= sup and is_prime(a+b)])
print(aList(9999)) # Peter Luschny, Jun 25 2021
CROSSREFS
Cf. A045700 (primes of the form p1^2 + p2^3).
Sequence in context: A343894 A155560 A353198 * A319969 A045809 A238675
KEYWORD
nonn
STATUS
approved