OFFSET
1,10
COMMENTS
Conjecture: a(n) > 0 for all n > 3.
We have verified a(n) > 0 for all n = 4..10000. The conjecture holds if a(p) > 0 for each odd prime p.
It seems that a(n) = 1 only for n = 4..9, 13, 17, 19, 21, 26, 27, 47.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..1500
EXAMPLE
a(4) = 1 with 4 = 2*1 + 1 + 1 and 16*1^2*1^2 + 19*1^2*1^2 + 29*1^2*1^2 = 8^2.
a(6) = 1 with 6 = 2*1 + 2 + 2 and 16*1^2*2^2 + 19*2^2*2^2 + 29*2^2*1^2 = 22^2.
a(9) = 1 with 9 = 2*2 + 4 + 1 and 16*2^2*4^2 + 19*4^2*1^2 + 29*1^2*2^2 = 38^2.
a(13) = 1 with 13 = 2*5 + 2 + 1 and 16*5^2*2^2 + 19*2^2*1^2 + 29*1^2*5^2 = 49^2.
a(19) = 1 with 19 = 2*2 + 14 + 1 and 16*2^2*14^2 + 19*14^2*1^2 + 29*1^2*2^2 = 128^2.
a(47) = 1 with 47 = 2*13 + 13 + 8 and 16*13^2*13^2 + 19*13^2*8^2 + 29*8^2*13^2 = 988^2.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[SQ[16(x*y)^2+(n-2x-y)^2*(19*y^2+29x^2)], r=r+1], {x, 1, (n-2)/2}, {y, 1, n-1-2x}]; tab=Append[tab, r], {n, 1, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 03 2021
STATUS
approved