login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230747
Number of ways to write n = x + y + 2*z with 0 < x <= y and z > 0 such that x^2 + y^2 + 2*z^2 is a square.
7
0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 2, 0, 1, 4, 0, 2, 1, 3, 1, 1, 1, 1, 4, 4, 3, 1, 2, 3, 1, 8, 2, 1, 3, 4, 4, 3, 6, 3, 2, 4, 3, 3, 5, 3, 2, 7, 7, 8, 3, 7, 5, 6, 6, 1, 4, 4, 6, 8, 7, 2, 6, 14, 8, 6, 5, 7, 4, 10, 6, 4, 5, 7, 7, 6, 10, 10, 4, 14, 11, 6, 8, 11, 8, 6, 6, 3, 8, 10, 11, 9, 7, 6, 13, 19, 4, 11, 8, 16
OFFSET
1,13
COMMENTS
Conjecture: a(n) > 0 for all n > 17.
Note that a(4*k) > 0 for all k > 0 since 4*k = k + k + 2*k and k^2 + k^2 + 2*k^2 = (2*k)^2.
See also A230121 for a related conjecture.
The conjecture was confirmed by Chao Haung and Zhi-Wei Sun in 2021. - Zhi-Wei Sun, May 09 2021
LINKS
Chao Huang and Zhi-Wei Sun, On partitions of integers with restrictions involving squares, arXiv:2105.03416 [math.NT], 2021.
Zhi-Wei Sun, Diophantine problems involving triangular numbers and squares, a message to Number Theory List, Oct. 11, 2013.
EXAMPLE
a(9) = 1 since 9 = 1 + 4 + 2*2 with 1^2 + 4^2 + 2*2^2 = 5^2.
a(21) = 1 since 21 = 5 + 8 + 2*4 with 5^2 + 8^2 + 2*4^2 = 11^2.
a(34) = 1 since 34 = 7 + 25 + 2*1 with 7^2 + 25^2 + 2*1^2 = 26^2.
a(56) = 1 since 56 = 14 + 14 + 2*14 with 14^2 + 14^2 + 2*14^2 = 28^2.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]]
a[n_]:=Sum[If[SQ[2i^2+j^2+(n-2i-j)^2], 1, 0], {i, 1, (n-2)/2}, {j, 1, (n-2i)/2}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 29 2013
STATUS
approved