|
|
A230746
|
|
Carmichael numbers of the form (30*k + 1)*(120*k + 1)*(150*k + 1), where 30*k + 1, 120*k + 1 and 150*k + 1 are all primes.
|
|
2
|
|
|
68154001, 3713287801, 63593140801, 122666876401, 193403531401, 227959335001, 246682590001, 910355497801, 4790779641001, 5367929037001, 6486222838801, 24572944746001, 25408177226401, 27134994772801, 55003376283001, 63926508701401, 108117809748001, 112614220996801
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; v = {30, 120, 150}; Times @@ (v*# + 1) & /@ Select[Range[1000], AllTrue[(w = v*# + 1), PrimeQ] && carmQ[Times @@ w] &] (* Amiram Eldar, Nov 11 2019 *)
|
|
PROG
|
(Magma) [n : k in [1..593 by 2] | IsPrime(a) and IsPrime(b) and IsPrime(c) and IsOne(n mod CarmichaelLambda(n)) where n is a*b*c where a is 30*k+1 where b is 120*k+1 where c is 150*k+1]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|