login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083739
Pseudoprimes to bases 2, 3, 5 and 7.
5
29341, 46657, 75361, 115921, 162401, 252601, 294409, 314821, 334153, 340561, 399001, 410041, 488881, 512461, 530881, 552721, 658801, 721801, 852841, 1024651, 1152271, 1193221, 1461241, 1569457, 1615681, 1857241, 1909001, 2100901
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..7469 (terms below 10^12; terms 1..114 from R. J. Mathar)
Jens Bernheiden, Pseudoprimes (in German).
FORMULA
a(n) = n-th positive integer k(>1) such that 2^(k-1) = 1 (mod k), 3^(k-1) = 1 (mod k), 5^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
A005938 INTERSECT A083737. - R. J. Mathar, Feb 07 2008
EXAMPLE
a(1)=29341 since it is the first number such that 2^(k-1) = 1 (mod k), 3^(k-1) = 1 (mod k), 5^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
MAPLE
a001567 := [] : f := fopen("b001567.txt", READ) : bfil := readline(f) : while StringTools[WordCount](bfil) > 0 do if StringTools[FirstFromLeft]("#", bfil ) <> 0 then ; else bfil := sscanf(bfil, "%d %d") ; a001567 := [op(a001567), op(2, bfil) ] ; fi ; bfil := readline(f) ; od: fclose(f) : isPsp := proc(n, b) if n>3 and not isprime(n) and b^(n-1) mod n = 1 then true; else false; fi; end: isA001567 := proc(n) isPsp(n, 2) ; end: isA005935 := proc(n) isPsp(n, 3) ; end: isA005936 := proc(n) isPsp(n, 5) ; end: isA005938 := proc(n) isPsp(n, 7) ; end: isA083739 := proc(n) if isA001567(n) and isA005935(n) and isA005936(n) and isA005938(n) then true ; else false ; fi ; end: n := 1: for psp2 from 1 do i := op(psp2, a001567) ; if isA083739(i) then printf("%d %d ", n, i) ; n :=n+1 ; fi ; od: # R. J. Mathar, Feb 07 2008
MATHEMATICA
Select[ Range[2113920], !PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PowerMod[3, 1 - 1, # ] == 1 && PowerMod[5, # - 1, # ] == 1 && PowerMod[7, 1 - 1, # ] == 1 & ]
PROG
(PARI) is(n)=!isprime(n)&&Mod(2, n)^(n-1)==1&&Mod(3, n)^(n-1)==1&&Mod(5, n)^(n-1)==1&&Mod(7, n)^(n-1)==1 \\ Charles R Greathouse IV, Apr 12 2012
CROSSREFS
Proper subset of A083737.
Sequence in context: A250940 A186566 A083740 * A329538 A182133 A182416
KEYWORD
nonn
AUTHOR
Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003
EXTENSIONS
Edited by Robert G. Wilson v, May 06 2003
STATUS
approved