login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343950
Number of ways to write n as x + y + z with x^2 + 4*y^2 + 5*z^2 a square, where x,y,z are positive integers with y or z a positive power of two.
3
0, 0, 0, 1, 1, 0, 0, 3, 1, 2, 2, 2, 3, 1, 4, 3, 2, 3, 3, 4, 4, 2, 1, 4, 6, 4, 2, 3, 12, 5, 3, 5, 8, 4, 5, 5, 8, 4, 7, 4, 4, 4, 7, 5, 5, 1, 4, 6, 5, 6, 6, 10, 7, 4, 9, 5, 10, 16, 7, 7, 9, 6, 5, 5, 14, 8, 6, 6, 3, 7, 1, 5, 4, 10, 5, 7, 10, 8, 13, 10, 3, 4, 8, 5, 12, 7, 20, 9, 12, 5, 8, 1, 9, 4, 8, 9, 8, 7, 4, 10
OFFSET
1,8
COMMENTS
Conjecture 1: a(n) > 0 for all n > 7.
We have verified a(n) > 0 for all n = 8..50000. Clearly, a(2*n) > 0 if a(n) > 0.
Conjecture 2: For any integer n > 7, we can write n as x + y + z with x,y,z positive integers such that x^2 + 2*y^2 + 3*z^2 is a square.
Conjecture 3: For any integer n > 4, we can write n as x + y + z with x,y,z positive integers such that 3*x^2 + 4*y^2 + 5*z^2 (or x^2 + 3*y^2 + 5*z^2) is a square.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. See also arXiv:1604.06723 [math.NT].
EXAMPLE
a(4) = 1, and 4 = 1 + 1 + 2 with 1^2 + 4*1^2 + 5*2^2 = 5^2.
a(5) = 1, and 5 = 2 + 2 + 1 with 2^2 + 4*2^2 + 5*1^2 = 5^2.
a(9) = 1, and 9 = 4 + 1 + 4 with 4^2 + 4*1^2 + 5*4^2 = 10^2.
a(14) = 1, and 14 = 7 + 5 + 2 with 7^2 + 4*5^2 + 5*2^2 = 13^2.
a(23) = 1, and 23 = 7 + 8 + 8 with 7^2 + 4*8^2 + 5*8^2 = 25^2.
a(46) = 1, and 46 = 14 + 16 + 16 with 14^2 + 4*16^2 + 5*16^2 = 50^2.
a(71) = 1, and 71 = 42 + 8 + 21 with 42^2 + 4*8^2 + 5*21^2 = 65^2.
a(92) = 1, and 92 = 28 + 32 + 32 with 28^2 + 4*32^2 + 5*32^2 = 100^2.
a(142) = 1, and 142 = 84 + 16 + 42 with 84^2 + 4*16^2 + 5*42^2 = 130^2.
MATHEMATICA
PowQ[n_]:=PowQ[n]=n>1&&IntegerQ[Log[2, n]];
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[(PowQ[y]||PowQ[n-x-y])&&SQ[x^2+4*y^2+5*(n-x-y)^2], r=r+1], {x, 1, n-3}, {y, 1, n-1-x}]; tab=Append[tab, r], {n, 1, 100}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 05 2021
STATUS
approved