login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343952
Let f map (x, y) to (x+y, x*y). Start from (X, X) and iterate f n times. Then a(n) is the coefficient of X^n in the polynomial in X that expresses the x-coordinate of the obtained position.
0
0, 2, 1, 2, 4, 10, 24, 66, 176, 498, 1416, 4122, 12068, 35930, 107632, 325346, 989600, 3029914, 9323248, 28831066, 89525028, 279074634, 872958488, 2739387258, 8621086800, 27203628682, 86050008056, 272807862746, 866704248868, 2758862542482, 8797833793728
OFFSET
0,2
COMMENTS
a(n) is also the coefficient of X^n in the polynomial that expresses the x-coordinate after N iterations, for any N greater than n.
EXAMPLE
Pos. 0: ( X+[0], X)
Pos. 1: ( [2]*X , X^2)
Pos. 2: ( [1]*X^2 + 2 *X , 2*X^3)
Pos. 3: ( [2]*X^3 + 1 *X^2 + 2 *X , 2*X^5+4*X^4)
Pos. 4: (2*X^5 + [4]*X^4 + 2 *X^3 + 1 *X^2 + 2 *X , 4*X^8+10*X^7+8*X^6+8*X^5)
PROG
(PARI)
list_a(nmax)= {
my(n=0, v=[Ser(x, x, nmax), Ser(x, x, nmax)], f=v->[v[1]+v[2], v[1]*v[2]]); print1("0, ");
while(n<nmax, n++; v=f(v); print1(polcoeff(v[1], n), ", "))}
list_a(30)
CROSSREFS
Cf. A000045 (degree of the n-th x-coordinate polynomial).
Sequence in context: A376989 A135547 A146307 * A063894 A268619 A024500
KEYWORD
nonn
AUTHOR
Luc Rousseau, May 05 2021
STATUS
approved