login
A328848
Number of terms in Zeckendorf expansion needed to write the second Fibonacci based variant of arithmetic derivative of n.
3
0, 0, 1, 1, 1, 1, 3, 1, 2, 2, 3, 1, 2, 1, 3, 3, 3, 1, 4, 1, 2, 3, 3, 1, 3, 3, 2, 3, 5, 1, 2, 1, 3, 4, 2, 4, 1, 1, 3, 2, 3, 1, 4, 1, 5, 5, 5, 1, 3, 3, 3, 3, 4, 1, 5, 4, 6, 4, 4, 1, 3, 1, 4, 5, 3, 3, 4, 1, 3, 4, 3, 1, 5, 1, 6, 4, 5, 3, 4, 1, 3, 3, 6, 1, 4, 3, 6, 6, 6, 1, 5, 3, 5, 5, 4, 5, 3, 1, 2, 5, 3, 1, 4, 1, 4, 3
OFFSET
0,7
LINKS
FORMULA
a(n) = A007895(A328846(n)).
PROG
(PARI)
A328846(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(2+primepi(f[i, 1]))/f[i, 1]));
A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 29 2019
STATUS
approved