OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-x) * psi(x^9) / (f(-x^6) * psi(x^3)) in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q)^2 * eta(q^3) * eta(q^18)^2 / (eta(q^2) * eta(q^6)^3 * eta(q^9)) in powers of q.
Euler transform of period 18 sequence [ -2, -1, -3, -1, -2, 1, -2, -1, -2, -1, -2, 1, -2, -1, -3, -1, -2, 0, ...].
Convolution inverse of A261240.
EXAMPLE
G.f. = 1 - 2*x - x^3 + 4*x^4 + 2*x^6 - 6*x^7 - 4*x^9 + 8*x^10 + ...
G.f. = q - 2*q^3 - q^7 + 4*q^9 + 2*q^13 - 6*q^15 - 4*q^19 + 8*q^21 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x^(-3/4) EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^(9/2)] / (QPochhammer[ x^6] EllipticTheta[ 2, 0, x^(3/2)]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^3 + A) * eta(x^18 + A)^2 / (eta(x^2 + A) * eta(x^6 + A)^3 * eta(x^9 + A)), n))};
CROSSREFS
KEYWORD
sign,changed
AUTHOR
Michael Somos, Aug 12 2015
STATUS
approved