login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261252
Expansion of f(-x^3) * f(-x^6) / (f(x) * f(-x^4)) in powers of x where f() is a Ramanujan theta function.
2
1, -1, 2, -4, 7, -10, 14, -22, 33, -45, 62, -88, 122, -163, 216, -290, 386, -502, 650, -846, 1093, -1393, 1768, -2248, 2844, -3565, 4454, -5566, 6927, -8566, 10562, -13014, 15986, -19543, 23832, -29032, 35272, -42700, 51578, -62226, 74906, -89909, 107712
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^3)^3 / (f(-x^2)^2 * f(x, x^2)) in powers of x where f(,) is a Ramanujan theta function.
Expansion of (chi(-x^3)^3 / chi(-x)) * (psi(x^3) / psi(x))^2 in powers of x where chi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/6) * eta(q) * eta(q^3) * eta(q^6) / eta(q^2)^3 in powers of q.
Euler transform of period 6 sequence [ -1, 2, -2, 2, -1, 0, ...].
Given g.f. A(x), then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (3*u^2 - v)^3 * v^3 - 4 * u^2 * (v - u^2) * (2*u^2 - v).
a(n) = A261251(3*n).
Convolution inverse is A132179.
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/3)) / (6^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 06 2018
EXAMPLE
G.f. = 1 - x + 2*x^2 - 4*x^3 + 7*x^4 - 10*x^5 + 14*x^6 - 22*x^7 + ...
G.f. = q - q^7 + 2*q^13 - 4*q^19 + 7*q^25 - 10*q^31 + 14*q^37 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] QPochhammer[ x^6] / (QPochhammer[ -x] QPochhammer[ x^4]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x^2 + A)^3, n))};
CROSSREFS
Sequence in context: A288243 A170890 A079963 * A056750 A171926 A171930
KEYWORD
sign
AUTHOR
Michael Somos, Aug 12 2015
STATUS
approved