login
A261240
Expansion of f(-x^6, -x^12)^2 / (f(-x, -x) * f(-x^3, -x^15)) in powers of x where f(, ) is Ramanujan's general theta function.
3
1, 2, 4, 9, 16, 28, 47, 76, 120, 185, 280, 416, 608, 878, 1252, 1765, 2464, 3408, 4676, 6364, 8600, 11545, 15400, 20424, 26938, 35346, 46152, 59981, 77616, 100016, 128369, 164140, 209120, 265510, 335992, 423840, 533035, 668404, 835804, 1042308, 1296448
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^6) * psi(x^3) / (phi(-x) * psi(x^9)) in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Expansion of q^(1/2) * eta(q^2) * eta(q^6)^3 * eta(q^9) / (eta(q)^2 * eta(q^3) * eta(q^18)^2) in powers of q.
Euler transform of period 18 sequence [2, 1, 3, 1, 2, -1, 2, 1, 2, 1, 2, -1, 2, 1, 3, 1, 2, 0, ...].
a(n) = A058647(2*n - 1) = A186115(2*n - 1) = A186964(2*n - 1) = A187020(2*n - 1).
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(7/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 9*x^3 + 16*x^4 + 28*x^5 + 47*x^6 + 76*x^7 + ...
G.f. = q^-1 + 2*q + 4*q^3 + 9*q^5 + 16*q^7 + 28*q^9 + 47*q^11 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x^(3/4) QPochhammer[ x^6] EllipticTheta[ 2, 0, x^(3/2)] / (EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^(9/2)]), {x, 0, n}];
nmax=60; CoefficientList[Series[Product[(1+x^k) * (1-x^(6*k))^3 * (1-x^(9*k)) / ((1-x^k) * (1-x^(3*k)) * (1-x^(18*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A)^3 * eta(x^9 + A) / (eta(x + A)^2 * eta(x^3 + A) * eta(x^18 + A)^2), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 12 2015
STATUS
approved