OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^6) * psi(x^3) / (phi(-x) * psi(x^9)) in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Expansion of q^(1/2) * eta(q^2) * eta(q^6)^3 * eta(q^9) / (eta(q)^2 * eta(q^3) * eta(q^18)^2) in powers of q.
Euler transform of period 18 sequence [2, 1, 3, 1, 2, -1, 2, 1, 2, 1, 2, -1, 2, 1, 3, 1, 2, 0, ...].
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(7/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 9*x^3 + 16*x^4 + 28*x^5 + 47*x^6 + 76*x^7 + ...
G.f. = q^-1 + 2*q + 4*q^3 + 9*q^5 + 16*q^7 + 28*q^9 + 47*q^11 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x^(3/4) QPochhammer[ x^6] EllipticTheta[ 2, 0, x^(3/2)] / (EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^(9/2)]), {x, 0, n}];
nmax=60; CoefficientList[Series[Product[(1+x^k) * (1-x^(6*k))^3 * (1-x^(9*k)) / ((1-x^k) * (1-x^(3*k)) * (1-x^(18*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A)^3 * eta(x^9 + A) / (eta(x + A)^2 * eta(x^3 + A) * eta(x^18 + A)^2), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 12 2015
STATUS
approved