OFFSET
-1,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of eta(q^3)^3 * eta(q^4) * eta(q^18) / (eta(q^2)^2 * eta(q^6) * eta(q^9) * eta(q^36)) in powers of q.
Euler transform of period 36 sequence [ 0, 2, -3, 1, 0, 0, 0, 1, -2, 2, 0, -1, 0, 2, -3, 1, 0, 0, 0, 1, -3, 2, 0, -1, 0, 2, -2, 1, 0, 0, 0, 1, -3, 2, 0, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A261154. - Michael Somos, Aug 10 2015
a(n) = -(-1)^n * A058647(n).
EXAMPLE
G.f. = 1/q + 2*q - 3*q^2 + 4*q^3 - 6*q^4 + 9*q^5 - 12*q^6 + 16*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2 q^(1/8) QPochhammer[ q^3] EllipticTheta[ 4, 0, q^3] / (EllipticTheta[ 4, 0, q^2] EllipticTheta[ 2, 0, q^(9/2)]), {q, 0, n}]; (* Michael Somos, Aug 10 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A) * eta(x^18 + A) / (eta(x^2 + A)^2 * eta(x^6 + A) * eta(x^9 + A) * eta(x^36 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 13 2011
STATUS
approved