login
A186113
a(n) = 13*n + 6.
8
6, 19, 32, 45, 58, 71, 84, 97, 110, 123, 136, 149, 162, 175, 188, 201, 214, 227, 240, 253, 266, 279, 292, 305, 318, 331, 344, 357, 370, 383, 396, 409, 422, 435, 448, 461, 474, 487, 500, 513, 526, 539, 552, 565, 578, 591, 604, 617, 630, 643, 656, 669, 682
OFFSET
0,1
COMMENTS
These numbers appear in the G. E. Andrews paper, for example: see the abstract, formula (1.7), etc. Also "13n + 6" appears in the Folsom-Ono paper (see links).
Row 6 of triangle A151890 lists the first seven terms of this sequence.
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 6, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube. - Bruno Berselli, Feb 19 2016
LINKS
Amanda Folsom and Ken Ono, The spt-function of Andrews, Proc. Natl. Acad. Sci. USA 105 (51) (2008) 20152-20156.
Ken Ono, Congruences for the Andrews spt-function, Proc. Natl. Acad. Sci. USA 108 (2011) 473-476.
FORMULA
G.f.: (6+7*x)/(1-x)^2.
E.g.f.: (6 + 13*x)*exp(x). - G. C. Greubel, May 31 2024
MATHEMATICA
Range[6, 1000, 13] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
LinearRecurrence[{2, -1}, {6, 19}, 60] (* Harvey P. Dale, May 12 2023 *)
PROG
(Magma) [13*n+6: n in [0..60]]; // G. C. Greubel, May 31 2024
(SageMath) [13*n+6 for n in range(61)] # G. C. Greubel, May 31 2024
CROSSREFS
Sequences of the form 13*n+q: A008595 (q=0), A190991 (q=1), A153080 (q=2),
A127547 (q=4), A154609 (q=5), this sequence (q=6), A269044 (q=7), A269100 (q=11).
Sequence in context: A319968 A277402 A092098 * A162332 A063233 A063147
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Feb 12 2011
STATUS
approved