OFFSET
0,1
COMMENTS
These numbers appear in the G. E. Andrews paper, for example: see the abstract, formula (1.7), etc. Also "13n + 6" appears in the Folsom-Ono paper (see links).
Row 6 of triangle A151890 lists the first seven terms of this sequence.
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 6, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no a(k) is a cube. - Bruno Berselli, Feb 19 2016
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
G. E. Andrews, The number of smallest parts in the partitions of n, J. Reine Angew. Math. 624 (2008) 133
Amanda Folsom and Ken Ono, The spt-function of Andrews, Proc. Natl. Acad. Sci. USA 105 (51) (2008) 20152-20156.
Ken Ono, Congruences for the Andrews spt-function, Proc. Natl. Acad. Sci. USA 108 (2011) 473-476.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
G.f.: (6+7*x)/(1-x)^2.
E.g.f.: (6 + 13*x)*exp(x). - G. C. Greubel, May 31 2024
MATHEMATICA
Range[6, 1000, 13] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
LinearRecurrence[{2, -1}, {6, 19}, 60] (* Harvey P. Dale, May 12 2023 *)
PROG
(Magma) [13*n+6: n in [0..60]]; // G. C. Greubel, May 31 2024
(SageMath) [13*n+6 for n in range(61)] # G. C. Greubel, May 31 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Feb 12 2011
STATUS
approved