login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153080
a(n) = 13*n + 2.
9
2, 15, 28, 41, 54, 67, 80, 93, 106, 119, 132, 145, 158, 171, 184, 197, 210, 223, 236, 249, 262, 275, 288, 301, 314, 327, 340, 353, 366, 379, 392, 405, 418, 431, 444, 457, 470, 483, 496, 509, 522, 535, 548, 561, 574, 587, 600, 613, 626, 639, 652, 665, 678, 691
OFFSET
0,1
COMMENTS
Any square mod 13 is one of 0, 1, 3, 4, 9, 10 or 12 (A010376) but not 2, and for this reason there are no squares in the sequence. Likewise, any cube mod 13 is one of 0, 1, 5, 8 or 12, therefore no term is a cube. - Bruno Berselli, Feb 19 2016
Numbers k such that GCD(2*k^5+1, 3*k^3+2) > 1. This GCD is 13 if k == 2 (mod 13), or 1 otherwise. - Philippe Deléham, Jan 16 2024
FORMULA
G.f.: (2+11*x)/(1-x)^2. - R. J. Mathar, Jan 05 2011
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 25 2012
MAPLE
A153080:=n->13*n+2: seq(A153080(n), n=0..100); # Wesley Ivan Hurt, Oct 05 2017
MATHEMATICA
Range[2, 1000, 13] (* Vladimir Joseph Stephan Orlovsky, May 29 2011 *)
LinearRecurrence[{2, -1}, {2, 15}, 30] (* Vincenzo Librandi, Feb 25 2012 *)
PROG
(Magma) I:=[2, 15]; [n le 2 select I[n] else 2*Self(n-1)-1*Self(n-2): n in [1..60]]; // Vincenzo Librandi, Feb 25 2012
CROSSREFS
Cf. A269100. - Bruno Berselli, Feb 22 2016
Sequence in context: A300346 A370031 A338457 * A075312 A212975 A128828
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 10 2009
STATUS
approved