OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
FORMULA
a(n) = (n+1)*(2*n*(n+2)+3*(-1)^n+1)/4.
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6).
G.f.: f(x)/g(x), where f(x) = 1 + 10*x^2 + x^4 and g(x) = ((1-x)^4)*(1+x)^2.
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Mod[Max[w, x, y] - Min[w, x, y], 2] == 0,
s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 60]] (* A212975 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 03 2012
STATUS
approved