login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212973
Number of triples (w,x,y) with all terms in {0,...,n} and w <= floor((x+y)/3).
4
1, 4, 12, 27, 50, 84, 131, 192, 270, 367, 484, 624, 789, 980, 1200, 1451, 1734, 2052, 2407, 2800, 3234, 3711, 4232, 4800, 5417, 6084, 6804, 7579, 8410, 9300, 10251, 11264, 12342, 13487, 14700, 15984, 17341, 18772, 20280, 21867, 23534
OFFSET
0,2
COMMENTS
For a guide to related sequences, see A212959.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
G.f.: (1 + x + 3*x^2 + x^3)/((1+x+x^2)*(1-x)^4).
a(n) = (n+1)^3 - A212974(n).
From Ayoub Saber Rguez, Dec 11 2023: (Start)
a(n) = A011379(n+1) - A212972(n).
a(n) = (n^3 + 4*n^2 + 5*n + 2 + (((n+1) mod 3) mod 2))/3. (End)
MATHEMATICA
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w <= Floor[(x + y)/3], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 60]] (* A212973 *)
LinearRecurrence[{3, -3, 2, -3, 3, -1}, {1, 4, 12, 27, 50, 84}, 50] (* Harvey P. Dale, Jan 24 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 03 2012
STATUS
approved